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(( the first lecturer ))  
 

1.1 Rings 
 

Definitions 1.1.1. Let R be a non-empty set that has two laws of compo-sition 

defined on it. (We call these laws addition and multiplication and use the 

familian notatation.) We say that R is a ring (with respect to the given addition 

and multiplication) if the following hold: 
 

(i) a + b and ab   R for all a, b   R; 
 

(ii) a + b = b + a for all a, b   R; 
 

(iii) a + (b + c) = (a + b) + c for all a, b, c   R; 
 

(iv) there exists an element 0   R such that a + 0 = a for all a   R; 
 

(v) given a   R there exists an element −a   R such that a + (−a) = 0; 
 

(vi) a(bc) = (ab)c for all a, b, c   R; 
 

(vii) (a + b)c = ac + bc for all a, b, c   R; 
 

(viii) a(b + c) = ab + ac for all a, b, c   R. 
 

Thus, a ring is an additive Abelian group on which an operation of mul-
tiplication is defined, this operation being associative and distributive (on both 
sides) with respect to the addition. 

 

R is called a commutative ring if, in addition, it satisfies ab = ba for all a, 

b R. The term non-commutative ring can be a little ambiguous. When applied 

to a particular example it clearly means that the ring is not com-mutative. 

However, when we discuss a class of “non-commutative rings” we mean “not 

necessarily commutative rings”, and it is usually not intended to exclude the 

commutative rings in that class. 

 

If there is an element 1 R such that 1a = a1 = a for all a R we say R has an 
identity. 
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1.2 Examples of Rings 
 

Example 1.2.1. The integers Z, the rational numbers Q, the real numbers R, the 
complex numbers C all with the usual operations. 

 

Example 1.2.2. R[x], the polynomial ring in an indeterminate x with coef-
ficients in R, with xr = rx for all r R. 

 

Example 1.2.3. Mn(R) := {n × n matrices over the ring R}. 
 

Example 1.2.4. Tn(R) := {n × n upper-triangular matrices over the ring R}. 

 

Example 1.2.5. Un(R) := {n × n strictly upper-triangular matrices over the ring 

R}. 
 

Example 1.2.6. F x1, . . . , xn , the free algebra over a field F with generators 

x1, . . . , xn. The generators do not commute, so x1x2x1x3 = x
2
1x2x3. 

 

Example 1.2.7. A1(C), the first Weyl algebra, which is the ring of poly-nomials 

in x and y with coe cients in C, where x, y do not commute but xy − yx = 1. 
 

Example 1.2.8. Subrings of the above, such as J := {a + ib|a, b Z}. 

 

1.3 Properties of Addition and Multiplication 
 

We typically write a − b for a + (−b). 
 

Proposition 1.3.1. The following hold for any ring R: 
 

(i) the element 0   R is unique; 
 

(ii) given a   R, −a is unique; 
 

(iii) −(−a) = a for all a   R; 
 

(iv) for any a, b, c   R, a + b = a + cb = c; 
 

(v) given a, b   R, the equation x + a = b has a unique solution x = b − a; 
 

(vi) −(a + b) = −a − b for all a, b   R; 
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(vii) −(a − b) = −a + b for all a, b   R; 
 

(viii) a0 = 0a = 0 for all a   R; 
 

(ix) a(−b) = (−a)b = −(ab) for all a, b   R; 
 

(x) (−a)(−b) = ab for all a, b   R; 
 

(xi) a(b − c) = ab − ac for all a, b, c   R. 

 

1.4 Subrings and Ideals 
 

Definition 1.4.1. A subset S of a ring R is called a subring of R if S is itself a 
ring with respect to the laws of composition of R. 

 

Proposition 1.4.2. A non-empty subset S of a ring R is a subring of R if and 

only if a − b S and ab S whenever a, b S. 
 

Proof. If S is a subring then obviously the given condition is satisfied. 

Conversly, suppose that the condition holds. Take any a S: a −a = 0 S. For any 

x S, 0 −x = −x S. So, if a, b S, a −(−b) = a + b S. So S is closed with respect 

to both addition and multiplication. Thus S is a subring since all the other 

axioms are automatically satisfied.  
 

Examples 1.4.3. (i) 2Z, the subset of even integers, is a subring of Z. 
 

(ii) Z is a subring of the polynomial ring Z[x]. 
 

Definition 1.4.4. A subset I of a ring R is called an ideal if 
 

(i) I is a subring of R; 
 

(ii) for all a I and r R, ar I and ra I. If I is an ideal 

of R we denote this fact by I R. 
 

Examples 1.4.5. (i) Let R be a non-zero ring. Then R has at least two ideals, 

namely R and {0}. We often write 0 for {0}. 

(ii) 2Z is an ideal of Z. 
 

Proposition 1.4.6. Let I be a non-empty subset of a ring R. Then I R if and 

only if for all a, b I and r R, a − b I, ar I, ra I. 

Proof. Exercise.  
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1.5 Cosets and Homomorphisms 
 

Definition 1.5.1. Let I be 

elements x + I := {x + i|i 

 

an ideal of a ring R and x R. Then the set of I} is 

the coset of x in R with respect to I. 
 

When dealing with cosets, it is important to realise that, in general, a given 
coset can be represented in more than one way. The next lemma shows for the 
coset representatives are related. 

 

Lemma 1.5.2. Let R be a ring with an ideal I and x, y R. Then x + I = y + I x 

− y I. 

Proof. Exercise.  

 

We denote the set of all cosets of R with respect to I by 
R

I . We can give 
R

I 

the structure of a ring as follows: define 
 

(x + I) + (y + I) := (x + y) + I 
 

and  
(x + I)(y + I) := xy + I 

 

for x, y R. The key point here is that the sum and product on 
R

I are well-

defined; that is, they are independent of the coset representatives chosen. Check 
this and make sure that you understand why the fact that I is an ideal is crucial to 
the proof. 

 

Definition 1.5.3. 
R

I is called the residue class ring (or quotient ring or factor 
ring) of R with respect to I. 

 

The zero element of 
R

I  is 0 + I = i + I for any i I. 
 

If I S R we denote by 
S
  the subset {s + I|s S} 

R 
. 

I I 

 
 
 

(i) every ideal of the ring 
R

I is of the form 
K

I where K R and K I. 

Conversely, K R, K I 
K

I 
R

I ; 
 

(ii) there is a one-to-one correspondence between the ideals of 
R

I and 
the ideals of R containing I. 
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Proof. (i) If K 
R

I then define K := {x R|x + I K }. Then K R, K I and 
K

I = K . 

 
 

 

(ii) The correspondence is given by K ↔ 
K

I , where I K R.   

Definitions 1.5.5. A map of rings θ : R → S is a (ring) homomorphism if θ(x + 
y) = θ(x) + θ(y) and θ(xy) = θ(x)θ(y) for all x, y R. θ defined by θ(r) = 0 for all 
r R is a homomorphism; it is called the zero homomorphism. 

 
φ defined by φ(r) − r for all r R is also a homomorphism; it is called the 

identity homomorphism. Let I R. Then σ : R → 
R

I defined by σ(x) = x + I for 

x R is a homomorphism of R onto 
R

I ; it is called the natural (or canonical) 

homomorphism (of R onto 
R

I ). 
 

Proposition 1.5.6. Let R, S be rings and θ : R → S a homomorphism. Then 

 

(i) θ(0R) = 0S ; 
 

(ii) θ(−r) = −θ(r) for all r   R; 
 

(iii) the kernel ker θ := {x   R|θ(x) = 0S } is an ideal of R; 
 

(iv) the image θ(R) := {θ(r)|r   R} is a subring of S. 
 

Proof. Exercise.  
 

Definitions 1.5.7. Let θ : R → S be a ring homomorphism. Then θ is called an 
isomorphism if θ is a bijection. We say that R and S are isomorphic rings 
and denote this  by  R S.   

= 
 

 

 

 

 

 

 

 



( The second lecture)) 
1.6 The Isomorphism Theorems 

 

Theorem 1.6.1. (The First Isomorphism Theorem.) Let θ : R → S be a 
homomorphism of rings. Then 

θ(R) 

R
 . 

 
= ker θ 

 

Proof. Let I := ker θ and define σ : 
R

I → θ(R) by σ(x + I) := θ(x) for x R. 
The map σ is well-defined since for x, y R, 

 

x + I = y + I x − y I = ker θ θ(x − y) = 0 θ(x) = θ(y). 
 

σ is easily seen to be the required isomorphism.  
 

 
Theorem 1.6.2. (The Second Isomorphism Theorem.) Let I be an ideal and L a 
subring of R. Then 
      L = L + I .    
              

      L ∩ I  I    

→ 

R
 . Restrict σ to the 

Proof. Let 
σ 

be the 
natural homomorphism R 

  L+I     R I  

ring L. We have σ(L) = 
  

, a subring of 
 

. The kernel of σ restricted to  I I 

L is L ∩ I. Now apply Theorem 1.6.1.   
Theorem 1.6.3. (The Third Isomorphism Theorem.) Let I , K R be such that I 
K. Then 

R/I R 

K/I 
=

 K 
. 

  

Proof.  
K

I 
R

I  and so  K/I
R/I  is defined.  Define a map γ :  RI  → K

R  by   
γ (x + I) := x + K for all x R. The map γ is easily seen to be well-defined and a 

homomorphism onto K
R

 . Further, 
 

γ (x + I) = Kx + K = K 
 

x   K 
K 

x + I I since K I 
  

Therefore, ker γ = 
K

I . Now apply Theorem 1.6.1.  

 

1.7 Direct Sums 
 

Definitions 1.7.1. Let {Iλ}λ Λ be a collection of ideals of a ring R. We define 
their (internal) sum to be 

 

Iλ  := x   R x = k xi, xi     Iλi , k   N   , 
λ  Λ 

  

i=1 
 

     

     



     
the set of all finite sums of elements of the Iλ’s. We say that the sum of the 
with  i  λi . In this case we    λ  Λ λ  1 · · ·  n  

Iλ’s is direct if each element of λ  Λ Iλ is uniquely expressible as x1 + · · ·+ xk 
 x  I  denote the sum as 

 

I , or I  I  if 

Λ is finite.  
λ  Λ 

    µ

∩
λ  Λ\{µ}   

0 for all µ   Λ. 

I 
λ is direct if and only if 

I I 
λ 

= 

Proposition 1.7.2. The sum         



 

 

  
Proof. Exercise.   

Definition 1.7.3. Let R1, . . . , Rn be rings. We define their external direct 

sum S to be the set of all n-tuples {(r1, . . . , rn)|ri Ri}. On S we define addition 

and multiplication componentwise, thus making S into a ring. We write S = R1 

· · · Rn.  
The set (0, . . . , 0, Rj , 0, . . . , 0) is an ideal of S. Clearly S is the inter-nal direct 

sum of the ideals (0, . . . , 0, Rj , 0, . . . , 0) for j = 1, . . . , n. But 
(0, . . . , 0,  R , 0, . . . , 0) R . Because of this  S can be considered as a ring in   

j = j  

which the Rj are ideals and S is their internal direct sum. Also, in Defini-tions 

1.7.1 we can consider I1 · · · In to be the external direct sum of the rings Ij . 
Hence, in practice, we do not need to distinguish between external and internal 
direct sums. 

 

1.8 Division Rings 
 

Definition 1.8.1. Let R be a ring with 1. An element 
invertible element) if there is a v R such that uv =  

v is called the inverse of u and is denoted u
−1

. 

 

u U is a unit (or an 
vu = 1. The element 

 

Definitions 1.8.2. A ring D with at least two elements is called a division ring 
(or a skew field) if D has an identity and every non-zero element of D has an 
inverse in D. A division ring in which the multiplication is commutative is 

called a field. 
 

Example 1.8.3. (The Quaternions.) Let H be the set of all symbols a0 + a1i + 

a2j + a3k where ai R. Two such symbols a0 + a1i + a2j + a3k and b0 + b1i + 

b2j + b3k are considered to be equal if and only if ai = bi for  
i = 0, 1, 2, 3. 

 

We make H into a ring as follows: addition is componentwise and two 

elements of H are multiplied term-by-term using the relations i
2
 = j

2
 = k

2
 = −1, 

ij = −ji = k, jk = −kj = i and ki = −ik = j. Then H is a non-commutative ring with 

zero 0 := 0 + 0i + 0j + 0k and identity 1 := 1 + 0i + 0j + 0k. 
 

 

Let a0 + a1i + a2j + a3k be a non-zero element of H, so not all the ai are 
zero. We have 

 

(a0 + a1i + a2j + a3k)(a0 − a1i − a2j − a3k) = a
2

0 + a
2
1 + a

2
2 + a

2
3  = 0. 
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So, letting n := a
2
0 + a

2
1 + a

2
2 + a

2
3, the element 

a
n

0
 − 

a
n

1
 i − 

a
n

2
 − 

a
n

3
 is the 

inverse of a0 + a1i + a2j + a3k.  

 

Thus, H is a division ring. It is called the division ring of real quaternions. 

Rational quaternions can be defined similarly where the coe cients are from 
Q. 

 

1.9 Matrix Rings 
 

Definition 1.9.1. Let R be a ring with 1. Define Eij Mn(R) to be the 

matrix with 1 in the (i, j)th position and 0 elsewhere. The Eij  are called 
matrix units.      

If (aij )   Mn(R) is arbitrary then clearly (aij ) = 
n 

 

R, i,j=1 
a

ij 
E

ij 
,
 
a

ij 

and this expression is unique. We also have    
E if j = k    

Eij Ek   =    0
i 

otherwise.    
Theorem 1.9.2. Let R be a ring with 1. Then 

 

(i) I    RMn(I)   Mn(R); 
 

(ii) conversely, every ideal of Mn(R) is of the form Mn(I) for some IR. 
 

Proof. (i) Trivial. 
 

(ii) Let XMn(R). We need an IR such that X = Mn(I).  Let 
E1αAEβ1     X s ince X    Mn(R ). So (aαj E1j )Eβ1     X

≤
.Hence

≤ 
 

A = (aij ) = i,j 
a

ij 

E
ij X.  Consider fixed α, β, 1α, β n.  We have 

  aαβ E11     X, (1.9.1) 

that is, the matrix with aαβ  in the (1, 1) position and 0 elsewhere belongs to 

X . 

 

Now let I be the set of all elements of R that occur in the (1, 1) position of 

some matrix in X. We show that I R and X = Mn(I). 

 

Let a, b I. Then a, b occur in the (1, 1) positions of matrices A, B X. So a − 

b = (A − B)11 I. Let a I, r R. Let a be the (1, 1) entry of 
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A   X. Then A = (aij ) = i,j aij Eij  with a11  = a. Then E11A(rE11)   X 

since XMn(R).  So a11 rE 11X, so arI. Similarly, raI. Thus 
 

I    R.             

  Now let C  = (cij ) = i,j 
c

ij 

E
ij X, cij R. By (1.9.1), cij I. 

So CMn(I).  So XMn(I). Finally, let D  = (dij )  = i,j dij Eij , 
d 

ij  
I . By the definition of I, for each (i, j), d 

ij 
E 

11 
X. Therefore, 

           

Ei1(dij E11)E1j X. So dij Eij X for each 1 ≤ i, j ≤ n. Since X is an 

ideal, we have D = i,j dij Eij X. So Mn(I) X, so Mn(I) = X.  

 

Remark 1.9.3. The above does not hold for right ideals, e.g. 

Z
 Z

r  M2(Z).
  

0   0 
 

Definition 1.9.4. A ring R is said to be simple if 0 and R are the only ideals of 
R. 

 
Theorem 1.9.5. Let R be a ring with 1. If R is simple then so is the ring 

Mn(R). 
 

Proof. 0 and R are the only ideals of R and so Mn(0) and Mn(R) are the only 

ideals of Mn(R). So Mn(R) is simple as well.  
 

Corollary 1.9.6. Let D be a division ring. Then the ring Mn(D) is a simple 
ring. 

 

Proof. The only ideals of D are 0 and D.  

 

 

 ((The Third lecture )) 
1.10 The Field of Fractions 

 

Definition 1.10.1. A (commutative) ring R is called an integral domain if ab = 
0 a = 0 or b = 0. 

 

Example 1.10.2. Z; F [x], where F is a field. 
 

Beware – non-commutative integral domains exist in advanced ring the-ory. 
 

 

Definition 1.10.3. Let R 

subring of a field K. Then of 

K is expressible as ab
−1

, 

 

 

be a (commutative) integral domain that is a K is 
the field of fractions of R if every element b = 0, 
a, b R. We write K = Frac(R). 
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We now show that every commutative integral domain has a field of frac-
tions that is in some sense unique. 

 

Example 1.10.4. Q = Frac(Z). Note that Z R, C as well, but R, C = Frac(Z). 
 

 

Let R be a commutative integral domain, R := R\{0}. Let S = {(a, b)|a R, b 

R }. Define a relation on S by 

(a1, b1) (a2, b2) a1b2  = a2b1. 

 

Lemma 1.10.5. is an equivalence relation on S. 
 

Proof. Let (ai, bi) S, i = 1, 2, 3. 
 

Reflexivity: (a1, b1) (a1, b1) since a1b1  = a1b1. 

 

Symmetry: 
 

(a1, b1) (a2, b2) a1b2  = a2b1 

a2b1  = a1b2 
 

(a2, b2)   (a1, b1) 
 

Transitivity: 
 

(a1, b1) (a2, b2) (a3, b3) a1b2 = a2b1, a2b3 = a3b2 

a1b2b3 = a2b1b3 

a1b2b3  = b1a3b2 
 

(a1b3 − a3b1)b2  = 0 
a1b3  = a3b1 

 

since b2  = 0 and R is an integral domain 
 

(a1, b1) (a3, b3)  
 
 

 

Theorem 1.10.6. Every (commutative) integral domain with 1 has a field of 
fractions. 
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Proof. Let R be an integral domain. Consider the equivalence relation  

as above. Denote the equivalence class of (a, b) by 
a

b . Let K be the set of all 
such equivalence classes. Define addition and multiplication in K by 

 

 a + c := ad + bc 
 

b 
  

bd   d   

and  
a c 

  
ac 

 
   :=  
      

   

b d bd      

for 
a
b , d

c
 K. We first make sure that these definitions are well-defined. Let 

a
b = 

a
b , d

c
 = d

c
 . Then (a, b) (a , b ) and (c, d) (c , d ), so ab = ba , cd = dc . 

Hence  
 

(ad + bc)b d = adbd + bcb d 
 

= a bdd + bb c d 
 

= (a d + b c )bd 
 

So (ad + bc, bd) (a d + b c , b d ). So + is well-defined. Similarly for multi-
plication. 

 

Note that 
0
b  = 

0
d  for any b, d R , since 0d = b0 = 0. 

 

It can be checked that K is a commutative ring under these operations. 
0

b , 

for any b R , is the zero element of K; 
−

y
x
 is the additive inverse of 

x
y ; the 

commutative, associative and distributive laws can be easily verified.  

 
1
1 = 

b
b for any b R is clearly the multiplicative identity in K. The 

multiplication is clearly commutative. Let 
x
y K , so x = 0, so xy = 0. So x

y
 exists 

and 
x y 

= 

xy 

= 

1 

= 1K 

     

y x xy 1 
 

Thus every non-zero element of K has an inverse in K, so K is a field. 

 

There is also a clear injective homomorphic embedding of R in K by θ : r → 
r
1 for r R. Now we truly have K as a field of fractions for 

θ(R) K, and R θ(R).  
= 

 

Remark 1.10.7. There is no fundamental problem if R is without 1, since we can 

still have 1K = 
b

b for any b R . Now embed R → K by r → 
rb

b . 
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 ¯     
Lemma 1.10.8. Let R, R be commutative integral domains with fields of 

¯  ¯   ¯ 
fractions K, K respectively. Then R = R  K = K. 

→ ¯ {  
−1

| 

Proof. Let θ : R R be an isomorphism. We have K = ab (a, b) 
× } → ¯ −1 −1 

R R . Define a map Θ : K K by Θ(ab ) := θ(a)θ(b) . 

 

Θ is well-defined: suppose that ab
−1

 = cd
−1

, (a, b), (c, d) R × R . Then ad 

= bc, so θ(ad) = θ(bc), so θ(a)θ(d) = θ(b)θ(c), so θ(a)θ(b)
−1

 = θ(c)θ(d)
−1

, so 

Θ(ab
−1

) = Θ(cd
−1

). 
 

Θ is a homomorphism: let ab
−1

, cd
−1

     K. Then 
 

Θ(ab
−1

 + cd
−1

) = Θ((ad + bc)b
−1

d
−1

) 

= θ(ad + bc)θ(bd)
−1

 

= (θ(a)θ(d) + θ(b)θ(c))θ(b)
−1

θ(d)
−1

 

= θ(a)θ(b)
−1

 + θ(c)θ(d)
−1

 

= Θ(ab
−1

) + Θ(cd
−1

). 
 

Similarly, Θ((ab
−1

)(cd
−1

)) = Θ(ab
−1

)Θ(cd
−1

).      

Θ is surjective: every element of K
¯ ¯  

R
¯ × 

R¯ . is expressible as a¯
¯

b
−1 

, (¯a, 
¯
b)   

But θ is an isomorphism, so a¯ = θ(a) for some a R, and b = θ(b) for some 
¯

−1 −1 −1 

b R . So a¯b = θ(a)θ(b) = Θ(ab ). 

 

It is easy to check that Θ is injective.  
 

Corollary 1.10.9. Let R be a commutative integral domain. Then its field of 
fractions is essentially unique, in that any two such fields of fractions are 
isomorphic. 

¯ 
Proof. Take R = R, θ = idR  in the above.  
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2 Modules 
 

2.1 Modules 
 

Definitions 2.1.1. Let R be a ring. A set M is called a right R-module if 
 

(i) M is an Abelian additive group; 
 

(ii) a law of composition M × R → M : (m, r) → mr is defined that satisfies, 
for all x, y M and r, s R, 

 

(x + y)r = xr + yr, 
 

x(r + s) = xr + xs, 
 

x(rs) = (xr)s. 

 

A left R-module is defined analagously. Here the composition law goes R × M 

→ M and is denoted rm. 

Examples 2.1.2. (i) R and {0} are both left and right R-modules. 
 

(ii) Let V be a vector space over a field F . Then V is left (alternatively, a 

right) F -module. The module axioms are part of the vector space axioms. 
 

 
(iii) Any Abelian group A can be considered as a left Z-module: for g A, k Z, 

define 
 

g + 
 

kg := (−g) + 

 
 

· · · + g k times k > 0 

· · · + (−g) k times k < 0 

0A  k = 0 

 

(iv) Let R be a ring. Then Mn(R) becomes a left R-module under the action 

r(xij ) := (rxij ). Clearly, we can also make a similar right R-module action. 

 

For technical reasons, it is easier to work with right modules in the theory of 
semi-simple Artinian rings. 

 

Let R be a ring. The symbol MR will denote M , a right R-module; similarly, 

RM will denote M , a left R-module. 
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Proposition 2.1.3. Let M be a right R-module. Then 
 

(i) 0M r = 0M  for all r   R; 
 

(ii) m0R = 0M  for all m   M ; 
 

(iii) (−m)r = m(−r) = −(mr) for all m   M , r   R. 
 

Proof. (i), (ii). Exercises. 

 

(iii) By (ii), 
 

mr + m(−r) = m(r + (−r)) = m0R = 0M . 
 

So m(−r) = −(mr) by the uniqueness of −(mr) in the Abelian group M .  
Similarly (−m)r = −(mr).   

Definition 2.1.4. Let K MR. Then K is a right R-submodule (or just 
submodule) if K is also a right R-module under the law of composition for  
M . 

 

Proposition 2.1.5. Let = K MR. Then K is a submodule of M if and only if for 

all x, y K, r R, x − y K and xr K. 

Proof. Exercise.   

Definitions 2.1.6. Submodules of the module RR  are called right ideals. 

Submodules of RR are called left ideals. 

 

2.2 Factor Modules and Homomorphisms 
 

Let K be a submodule of MR. Consider the factor group 
M

K . 
M

K 

are cosets of the form m + K for m M . We can make 
M

K R-
module by defining, for m M , r R, 

 

[m + K]r := [mr + K]. 

 

Elements of 
into a right 

 

Check that this action is well-defined and that the module axioms are satis-fied. 
 

 

Definition 2.2.1. 
M

K with this action is called the factor (or quotient) module 
of M by K. 
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Example 2.2.2. Let n Z, n ≥ 2. Then n
Z

Z is a natural Z-module.   
Definitions 2.2.3. Let M, M be right R-modules. A map θ : M → M is an R-
homomorphism if 

 

(i) θ(x + y) = θ(x) + θ(y) for all x, y   M ; 
 

(ii) θ(xr) = θ(x)r for all x   M , r   R. 
 

(Similarly for left R-modules.) If K is a submodule of MR  then the map 

σ : M → 
M

K  defined by σ(m) = [m + K] is an R-homomorphism of M onto 
M

K . It is called the canonical (or natural) R-homomorphism. 
 

Proposition 2.2.4. Let θ : MR  → MR  be an R-homomorphism. Then 
 

(i) θ(0M ) = 0M  ; 
 

(ii) the kernel ker θ := {x   M |θ(x) = 0M  } is a submodule of M ; 
 

(iii) the image θ(M ) := {θ(m)|m   M } is a submodule of M ; 
 

(iv) θ is injective if and only if ker θ = {0M }.  

Definition 2.2.5. Let θ  : MR  → MR  be an R-homomorphism.  If θ is 
bijective then it is  an R-isomor phism and we write M M .  

= 

 
(( Fourth lecture )) 

 

2.3 The Isomorphism Theorems 
 

These are similar to those for rings and have similar proofs. Theorem 

2.3.1. Let θ : MR → MR be an R-homomorphism. Then 

θ(M ) 
M

 .  
= ker θ  

Theorem 2.3.2. If K, L are submodules of MR  then 

    L + K =  L .       
                 

    K L ∩ K      

L 

 

Theorem 
2.3.3. If K, L are submodules of M K 

 

L then is a K  M 

and 
   R  and   

submodule of 
           

K           

     M/K = M .        
                 

     L/K  L        
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When K is a submodule of MR and L K a submodule of M , then K
L
 is a 

submodule of 
M

K . Conversely, every submodule of 
M

K is K
L
 for L a submodule 

of M containing K. Thus  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

submodules of 

M 

↔ {submodules of M containing K} . K  
 

2.4 Direct Sums of Modules 
 

Definition 2.4.1. Let M1, . . . , Mn be right R-modules. The set of all n-tuples 

{(m1, . . . , mn)|mi Mi} becomes a right R-module if we define 

(m1, . . . , mn) + (m , . . . , m ) := (m1 + m , . . . , mn + m ), 
 1 n 1 n  

 (m1, . . . , mn)r := (m1r, . . . , mnr),  

for mi, mi n   Mi, r   R. This is the external direct sum of the Mi, which we 

denote i=1 

M
i  

or
 

M
1

· · ·  M
n

. 
   

Definition 2.4.2. Let {Mλ}λ Λ be a collection of subsets of MR. We define their 
(internal) sum by 

 

Mλ  := {mλ1 + · · · + mλk | mλi       Mλi for finite subsets {λ1, . . . , λk }  Λ} . 
λ  Λ          

          

Thus λ  Λ Mλ  is the set of all finite sums of elements from the Mλ.  It is 
easy to see that 

λ  Λ 
M    M 

. 
 

  
λ  is a submodule of 

  

  

λ  Λ Mλ  is direct if each m 
 

Definition 2.4.3.  λ  Λ Mλ  has a unique 
representation as m = mλ1 + 

· · · 

+
 

m
λk for some mλi 

M
λi 

. 

        

We can show that λ  Λ Mλ  is direct if and only if 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Mµ ∩ 
  

Mλ 
 

= {0}  

λ  Λ\{µ} 

 

     
 

for all µ Λ. If the sum is direct we use the same notation as above. 

 



As before with rings, there really is no di erence between (finite) internal 
and external direct sums of modules. 
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Definition 2.4.4. Let R be a ring with 1. MR is unital if m1 = m for all m M . 

Similarly for RM . 
 

Exercise 2.4.5. Let R be a ring with 1, M a right R-module.  Show that 

M has submodules M1 and M2 such that M = M1 M2 with M1 unital and m2r = 

0 for all m2 M2, r R. 
 

Since modules like M2 give us no information about R, whenever R has 1 
we assume that all R-modules are unital. 

 

2.5 Products of Subsets 
 

Let K, S be non-empty subsets of MR and R respectively. Define their prod-uct 
KS to be 

n  

KS := kisi  ki K, si S, n N . 
 

i=1 

 

I.e., KS consists of all finite sums of elements of type ks If = 

K M , S r R, then KS is a submodule of M – to make this 
work. 

 

for k K, s S.  
we need finiteness 

 

This definition applies, in particular, with M = R. Thus, if = S R, 
 

S2  :=
n 

siti  si, ti     S, n   N   . 
i=1 

   

    

    

    

Extending this inductively, S
n
 consists of all finite sums of elements of type 

s1s2 . . . sn, si S. Note that S r R S
n
 r R. 
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3 Zorn’s Lemma 
 

3.1 Definitions and Zorn’s Lemma 
 

Definition 3.1.1. A non-empty set S is said to be partially ordered if there is a 

binary relation ≤ on S, defined for certain pairs of elements, such that for all a, 

b, c S, 
 

(i) a ≤ a; 
 

(ii) a ≤ b and b ≤ ca ≤ c; 
 

(iii) a ≤ b and a ≤ ba = b. 
 

Definition 3.1.2. Let S be a partially ordered set, a non-empty subset T is said 

to be totally ordered if for all a, b cT , a ≤ b or b ≤ a. 
 

Definitions 3.1.3. Let S be a partially ordered set. An element x S is called 

maximal if x ≤ y and y S x = y. Similarly for minimal. 
 

Definition 3.1.4. Let T be a totally ordered subset of a partially ordered set S. 

We say T has an upper bound (in S) if c S such that x ≤ c for all x T . 

 

Axiom 3.1.5. (Zorn’s Lemma.) If a partially ordered set S has the property that 

every totally ordered subset of S has an upper bound then S contains a maximal 

element. 
 

Remark 3.1.6. There may in fact be several maximal elements. Zorn’s Lemma 
guarantees the existence of at least one such element. 

 

3.2 The Well-Ordering Principle 
 

Definition 3.2.1. A non-empty set S is said to be well-ordered if it is totally 

ordered and every non-empty subset of S has a minimal element. 
 

Axiom 3.2.2. (The Well-Ordering Principle.) Any non-empty set can be well-
ordered. 

 
 
 
 
 

 

21 



 
 
 
 

 

3.3 The Axiom of Choice 
 

Axiom 3.3.1. (The Axiom of Choice.) Given a class of non-empty sets there 
exists a “choice function”, i.e. a function that assigns to each of the sets one of 
its elements. 

 

It can shown that 
 

Axiom of Choice Zorn’s Lemma Well-Ordering Principle. 

 

3.4 Applications 
 

Definitions 3.4.1. let M be a right ideal of a ring R. 

maximal right ideal if M = R and M M r R M maximal 
left ideal and maximal two-sided ideal. 

 

M is said to be a  
= R, Similarly for 

 

Theorem 3.4.2. Let R be a ring with 1. Let I = R be a (right) ideal of R.  
Then R contains a maximal (right) ideal M such that I M . 

 

Proof. We prove this for I r R. Consider S := {X r R|X I , X = R}. S = since I 

S. Partially order S by inclusion. Let T := {Xα}α Λ be a totally ordered subset of 

S. 

 ¯  ¯ 
X

α1 

,
 

x
2 

X
α2 for some  Consider X := α  Λ Xα. If x1, x2     X then x1 

α1, α2      Λ. Since T is totally ordered, we can assume that Xα1Xα2 . So 
  ¯  ¯   

x1, x2     Xα2 , so x1 − x2     Xα2     X. Clearly, also x   X, and r   Rxr 

¯ ¯ ¯     

X. Thus X   r  R. Also X = R since    
  ¯ ¯    

  X = R1 X    

1   Xα  for some α 
 

Xα = R, 
¯
 

¯
 S 

¯ 

which is a contradiction. Trivially, X I so X . Also clearly, Xα X for all α Λ. 

¯
 S T 

 
Thus, X is an upper bound in for . So Zorn’s Lemma applies and hence S 

contains a maximal element M . Clearly M is a maximal right ideal of R and 
contains I. 

 

The proof is similar for left ideals and two-sided ideals.  
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Remark 3.4.3. This result is false if R is without 1. 
 

Corollary 3.4.4. A ring with 1 contains a maximal (right) ideal. 
 

Proof. Take I = {0} in the above.  
 

Note that pZ is a maximal ideal of Z for each prime p. 
 

Theorem 3.4.5. Every vector space has a basis. 
 

Proof. Exercise. Hint: Apply Zorn’s Lemma to obtain a maximal set of 
linearly independent vectors. Note that a set of vectors is defined to be linearly 
independent if every finite subset is linearly independent.  

 

Exercises 3.4.6. Let R be a commutative ring with 1. Show that 
 

(i) if R is a finite integral domain then R is a field; 
 

(ii) if M    R and M = R then M is maximal if and only if 

 
 

 

M
R

  is a field.  
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(( Fifth lecture)) 
4 Completely Reducible Modules 

 

4.1 Irreducible Modules 
 

Definition 4.1.1. A right R-module M is irreducible if 
 

(i) M R = 0; 
 

(ii) M has no submodules other than 0 and M . 
 

If R has 1 and M is unital then (i) can be replaced by M = 0. 
 

Examples 4.1.2. (i) Let p be a prime; then p
Z

Z is an irreducible Z-module.  
 

(ii) Every ring R with 1 has an irreducible right R-module. By Theorem 3.4.2, 

R has a maximal right ideal M ; M
R

 is an irreducible right R-module. 
 
 

(iii) Let V be a vector space over a field F . Then any 1-dimensional sub-space 
of V is an irreducible F -module.  

 

The vector space V has the following interesting property: V is a sum of 1-
dimensional irreducible submodules/subspaces, i.e. has a basis; this sum is 

direct. Not all modules over arbitrary rings have this property. Consider 4
Z

Z as a 

Z-module. 
2
4
Z

Z is the only (irreducible) submodule of 4
Z

Z . So 4
Z

Z is not 
expressed as a sum of irreducible submodules.  

 

4.2 Completely Reducible Modules 
 

Definition 4.2.1. MR is said to be completely reducible if M is expressible as a 
sum of irreducible submodules. 

 

Examples 4.2.2. (i) Let F be a field. Then every F -module is completely 
reducible, i.e. every vector space has a basis. 

 

(ii)  6
Z

Z is completely reducible as a Z-module:  6
Z

Z = 
2
6
Z

Z + 
3

6
Z

Z .   

Definition 4.2.3. Let {Mλ}λ  Λ  be a family of submodules of MR.  The 

family is independent if the sum λ Λ Mλ  is direct. Thus {Mλ}λ  Λ  is inde- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

pendent if and only if Mµ ∩ λ Λ\{µ} Mλ = 0 for all µ Λ. 
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Lemma 4.2.4. Suppose {Mλ}λ  Λ  is a family of irreducible submodules of 

MR  and let M := λ Λ Mλ. Let K be a submodule of M . Then there is an  
  

independent subfamily {Mλ}λ  Λ such that M = K µ Λ Mµ . 
 

Proof. We apply Zorn’s Lemma to the independent families of the form {K} 

{Mµ}µ X , X Λ. 
 

Partially order the set S of all such families by inclusion. Let T be a to-tally 

ordered subset of S, C the union of all the families in T . Each member of T has 

the form {K} {Mµ}µ X Λ, so we have the same form for C. 
 

We need to show that C S, i.e. C is an independent family. Let I be any 

submodule in C and suppose Σ is the sum of all other submodules in C. Let x I 

∩ Σ. Then x = x1 + · · · + xn, xj Ij = I, Ij a submodule in C for j = 1, . . . , n. 
 

 

Now I , I1, . . . , In  are all in C so each comes from some family in T . But  

T is totally ordered, so I , I1, . . . , In lie in some one family in T . But this 

family is independent, so x = x1 = · · · = xn = 0. So I ∩ Σ = 0. 
 

So C is independent. Also C has the form {K} {Mµ}µ X Λ, so C S. Clearly C 

is an upper bound for T . So, by Zorn’s Lemma, S contains a maximal element, 

say {K} {Mµ}µ Λ Λ. ( ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
   µ = 0.      α     µ µ  Λ    

 We claim M  = K µ  Λ  

M
µ   

. 
 Suppose   α Λ such that Mα  ∩ 

 µ  Λ 

M 
 

Then 
{ 

K 
}  { 

M 
 }  { 

M 
}  

would be an inde- K       
∩ 

   
      

). Thus M 
 µ  Λ 

M 
 

  family, contradicting (   K       = M 
pendent        α   

 
 

µ  Λ 
  µ α for 

         ∩        

all α   Λ, since Mα is irreducible and Mα 
  

K 
   

Mµ 
 

is a submod-        
    

ule of Mα. So Mα      K µ  Λ  Mµ for each α   Λ. As M =   λ  Λ Mλ, 
 M = Kµ  Λ Mµ    . 

     
 

Lemma 4.2.5. (Dedekind Modular Law.) Let A, B, C be submodules of MR 

such that B A. Then A ∩ (B + C) = B + A ∩ C. 
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Proof. Elementary.  
 

Theorem 4.2.6. Let M be a non-zero right R-module. The following are 
equivalent: 

 

(i) M is completely reducible; 
 

(ii) M is a direct sum of irreducible submodules; 
 

(iii) mR = 0, m M m = 0 and every submodule of M is a direct summand 
of M . 

 

Proof. (i) (ii). Take K = 0 in Lemma 4.2.4 above. 
 

(ii) (iii). Suppose that mR = 0 for some m M . Let M = λ Λ Mλ, 

Mλ  irreducible. Then m = m1 + · · · + mk  for some mi Mλi .  

mr = 0, r R m1r + · · · + mk r = 0 

mir = 0 for all i, 
 

since the sum of the Mλ  is direct. 
 

Define Kj := {x Mλj |xR = 0} for j = 1, . . . , k. Then Kj is a submod-ule of 

Mλj . So Kj = 0 or Mλj since Mλj is irreducible. But Kj = Mλj since  

Mλj R = 0 by definition of irreducible submodule. So Kj = 0 for j = 1, . . . , k. 

Thus mj = 0 for j = 1, . . . , k, so m = 0. The second part follows from Lemma 
4.2.4. 

 

(iii) (i). Our first aim is to show that M has an irreducible submodule. 

 

Note that by the Dedekind Modular Law the hypothesis on M is inher-ited 
by every submodule of M . 

 

Let 0 = y M . Let S be the set of all submodules K of M such that y K. S = 

since {0} S. Partially order S by inclusion; let T be a totally ordered subset of S. 

Let C be the union of all the submodules in T . Then y C and C is a submodule 

of M . So C S and C is an upper bound for T . By Zorn’s Lemma, S has a 

maximal element B. y B so B = M . Hence, by hypothesis, there is a B = 0 such 

that B B = M . We claim 
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that B  is irreducible. 

 

B R = 0 by hypothesis. Suppose B contains a proper submodule B1 = 0. 

Then there is a submodule B2 = 0 such that B = B1 B2. Now y B1 B2 by the 

maximality of B S. So y (B B1) ∩ (B B2) = B, a contradic-tion. So B is 

irreducible, and thus M has an irreducible. Let K be the sum of all these. 
 

 

If K = M there is a non-zero submodule L of M such that M = K L. But the 

above applied to L gives an irreducible in L, a contradiction since K contains all 

the irreducible submodules of M and K ∩ L = 0. Thus K = M and M is 

completely reducible.  
 

Remark 4.2.7. The first part of condition (iii) holds automatically when R has 1 
and M is unital. 

 

4.3 Examples of Completely Reducible Modules 
 

Example 4.3.1. Let D be a division ring and R := Mn(D). Then both RR and RR 

are completely reducible. 
 

Proof. Let 
 

0   . . .   0 
.   . 

. . 
. 

.. .. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Ij  :=  D  . . . D  ← jth row 
 ..  . . .   ..       

  

. 
  

. 
      

   . . .       
 0  0      

            
 .. . . . ..   

   0 . . . 0 
 

  
D =aj1    . . .   ajn a  

   .   . jk   
   

. 
  

. 
 

 

 

 

      

   . . . . .     
      

  

. 
  

. 
    

          

   0 . . . 0    

        

 

   

          

        

 

   

           

            
Ij  is the set of all matrices in Mn(D) where all rows except the jth are zero. 

Then Ij r  R and Ij  = Ejj R, where Ejj  is the (j, j) matrix unit. 
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We claim that each Ij  is an irreducible R-module. 
 

Suppose that 0 X Ij , X r R. Then X contains a non-zero matrix A = (aαβ ). A 

must have a non-zero entry, and since A Ij , ajk = 0 for some k. Let B be he 

matrix with a
−

jk
1
 in the (k, j)th place and 0 elsewhere. Then AB = Ejj . So Ejj X, 

since A X r R. So Ejj R X since X r R. Thus Ij = X. Since R has 1, Ij R = 0, each 

Ij is an irreducible right R-module. 

 

It is clear that R = I1 · · · In, so RR is completely reducible. Similarly for 

RR.  
 

Example 4.3.2. Let R := R1 · · · Rm be a direct sum of rings, where Ri := Mni 

(Di), Di division rings, ni N. Again RR and RR are completely reducible. 

 

Proof. Since each Ri R, each Ri can be viewed as an Ri-module or an R-

module. Further, the Ri-submodules and R-submodules coincide. Note that RiRj 
= 0 for i = j. 

 

By the previous example, each Ri  is a sum of irreducible Ri-submodules. 

So each Ri is a sum of irreducible R-submodules. So R is a sum of irreducible 

R-submodules. Hence RR and RR  are completely reducible. 

 

The significance of this example is that we now aim to show that if R is a 

ring with 1 and RR is completely reducible then it is necessarily a ring of the 

type given in the second example above. As a consequence we shall have RR 

completely reducible RR completely reducible. 
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(( Sixth lecture )) 
5 Chain Conditions 

 

5.1 Cyclic and Finitely Generated Modules 
 

Definitions 5.1.1. Let = T MR. By the submodule of M generated by 
 

T we mean the intersection of all submodules of M that contain T . We de-note 
this by (T ). Thus (T ) is the “smallest” submodule of M that contains T . 

 

When T consists of a single element a M we have 
 

(a) = {ar + λa|r R, λ Z} 
 

since the RHS 
 

(i) is a submodule of M ; 
 

(ii) contains a; 
 

(iii) lies inside any submodule of M containing a. If 

R has 1 and M is unital then (a) = aR. 

 

If M = (a) for some a M then M is said to be a cyclic module generated by 

a. A module M is said to be finitely generated if M = (a1) + · · · + (ak ) for 

some finite collection {a1, . . . , ak } M . The ai are generators of M 
 

If R has 1 and MR  is unital then MR  finitely generated M = a1R + 
 

· · · + ak R for some ai     M . 
 

A cyclic submodule of RR (respectively RR) is called a principal right 
(respectively left) ideal of R. Thus aZ Z is principal. 

 

5.2 Chain Conditions 
 

Definition 5.2.1. A set A is called an algebra over a field F if 
 

(i) A is a vector space over F ; 
 

(ii) A is a ring with the same addition as in (i); 
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(iii) the ring and vector space products satisfy 
 

λ(ab) = λ(ab) = a(λb) 
 

for all a, b A and λ F . 
 

Example 5.2.2. Mn(F ) is an n
2
-dimensional algebra over the field F . 

 

Substructures, homomorphisms etc. for algebras can be defined in the usual 
ways. Thus 

 

Definition 5.2.3. I A is an (algebra) right ideal if 
 

(i) I   r  A as rings; 
 

(ii) I is a subspace of the vector space A. 
 

If A has identity 1 then the vector space structure is automatically preserved. 
 

Example 5.2.4. Let I r A, K A. Then for λ F , x I, λx = λ(x1) = x(λ1) I, since I is 
a right ideal of the ring A and λ1 A. Similarly, for 

 
λ F , y K, λy = λ(1y) = (λ1)y K. In general, if A is an algebra over a field F 
and λ F we cannot immediately say that λ A. 

 

However, if A has 1 we can overcome this problem: define 
 

F
¯

 := {λ1|λ F }. 
¯ 

Clearly F is a subalgebra of A and a field isomorphic to F .  If we identify 
↔ 

¯ → 

F F we can assume F A. 
 

Example 5.2.5. For Mn(F ),   

 

 

λ  . . . 0  

F    λ ↔ . .  
F

¯
 . 

..   
.
 . . .. 

 0  . . . λ   
   

 

Now let A be an n-dimensional algebra with 1. Let I1 I2 . . . be an ascending 

chain of right ideals in A. Since each Ij is a subspace of A we have 
 

dim Ij  = dim Ij+1 Ij  = Ij+1. 
 

Hence, the chain can have at most n + 1 terms. Similarly for descending chains. 

Many properties of algebras can be deduced from these facts alone. Moreover, 

there are rings (for example, Z) that are not algebras but that still satisfy 

something like the above property. 
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Definitions 5.2.6.  (i) A module MR  has the ascending chain condition on 

submodules if every ascending chain of submodules M1       M2  
. . . has equal terms after a finite number of steps. Similarly for the 
descending chain condition. 

 

(ii) MR has the maximum condition if every non-empty set S of submodules 
of M contains a maximal element with respect to inclusion. Similarly for 
the minimum condition. 

 

Remark 5.2.7. The ascending chain condition or descending chain condi-tion 

alone does not imply that all chains stop after a fixed n terms. For example, Z 

has the ascending chain condition (it’s a principal ideal domain) but ascending 

chains of arbitrary length can be constructed: 
 

2
k
 Z 2

k−1
Z · · · 2Z Z. 

 

However, if we have both the ascending chain condition and descending chain 
condition then such a “global” n does exist. This follows from the theory of 

composition series. 
 

Theorem 5.2.8. Let MR  be a right R-module. The following are equivalent 
 

(i) M has the maximum condition on submodules; 
 

(ii) M has the ascending chain condition on submodules; 
 

(iii) every submodule of M is finitely generated. 
 

Proof. (i) (iii). Suppose that K is a submodule of M that is not finitely 

generated. Choose x1 K and let K1 := (x1). Then K = K1. So x2 K with x2 K1. 

Let K2 := (x1) + (x2). Then K2 = K. So x3 K such that x3 K2. K3 := (x1) + (x2) + 

(x3). Define Ki inductively like this for positive integers i. Let S := {Ki|i N}; S 

has no maximal element. So, by the contrapositive, if M has the maximum 

condition on submodules then every submodule is finitely generated. 

 

(iii) (ii). Let K1 K2 . . . be an ascending chain of submodules of M . 
∞ 

Let K := i=1 Ki; then K is a submodule of M and K is finitely generated, 

generated by x1, . . . , xn K, say. Then t N such that x1, . . . , xn Kt. So K = (x1) 

+ · · · + (xn) Kt. Hence Kt = Kt+j for all j ≥ 0. 
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(ii) (i). Let S be a non-empty collection of submodules of M , Choose K1 S. 

If K1 is not maximal in S, K2 S such that K1 K2. If K2 is not maximal K3 S 

such that K2 K3. So, by the Axiom of Choice, we obtain an ascending chain K1 

K2 K3 . . . of submodules of M .  
 

Theorem 5.2.9. Let MR  be a right R-module. The following are equivalent 
 

(i) M has the minimum condition on submodules; 
 

(ii) M has the descending chain condition on submodules; 
 

Proof. Similar to the above. 
 

 

Examples 5.2.10. (i) A finite ring has both the ascending chain condi-tion and 
descending chain condition on right and left ideals. 

 

(ii) A finite-dimensional algebra with 1 has both the ascending chain con-
dition and descending chain condition on right and left ideals. 

 
(iii) A commutative principal ideal domain has the ascending chain condi-  

tion on ideals. Z, F [x] and J are commutative principal ideal domains. So, 

in particular, these have the ascending chain condition on ideals; they do 

not have the descending chain condition on ideals. 
 

Theorem 5.2.11. Let K be a submodule of a module MR. Then M has the 
ascending chain condition (respectively the descending chain condition) 

on submodules if and only if 
M

K has the ascending chain condition 
(respectively the descending chain condition) on submodules. 

 

Proof. ( ). Easy. 

 

( ). Let M1 M2 . . . be an ascending chain of submodules of M . Consider the 
chains 

 

M1 ∩ K M2 ∩ K . . . , 

M1 + K M2 + K . . . . 

 

The first chain consists of submodules of K, so  j   N such that Mj ∩ K = ∩ K  for all i ≥ 0.  The second chain consists of submodules of M 

 

 

containing K.  These are in one-to-one correspondence with submodules of 
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j+i 



 
 
 
 

 
M

K . So k N such that Mk +K = Mk+i +K for all i ≥ 0. Let n = max{j, k}. Now 
 
 

Mn+i = Mn+i ∩ (Mn+i ∩ K) 
 

= Mn+i ∩ (Mn + K) 

= Mn + (Mn+i ∩ K) by the Dedekind Modular Law 

= Mn + (Mn ∩ K) 
= Mn 

 

So M has the ascending chain condition on submodules. Similarly for the 
descending chain condition.  

 

Corollary 5.2.12. Let M1, . . . , Mn be submodules of MR. If each Mi has the 

ascending chain condition (respectively, the descending chain condition) 

on submodules then so does K := M1 + · · · + Mn. 

Proof. Let K1  := M1 + M2. Then by the Second Isomorphism Theorem, 

        
K

1  = 
M

1 
+

 
M

2  = 
M

2. 
              

        M1  M1 M1 ∩ M2 

Now 
M2  

has the ascending chain condition on submodules, since it is a M1∩M2  

factor of M2 . So K1 has the ascending chain condition on submodules. Thus 
 

  
K1 

   M1      

M1  and 
 

have the ascending chain condition on submodules. So, by The- M1 

orem 5.2.11, K1 has the ascending chain condition on submodules. Extend to K 
by induction. 

 

Analagously for the descending chain condition.  
 

Corollary 5.2.13. Let R have 1 and the ascending chain condition (respec-

tively, the descending chain condition) on ideals. Let MR be a (unital) 
finitely generated R-module. Then M has the ascending chain condition 
(respectively, the descending chain condition) on submodules. 

 

Proof. Since MR is unital and finitely generated, there exist m1, . . . , mk  

M such that M = m1R + · · · + mk R. By Corollary 5.2.12, it is enough to show 

that each miR has the ascending chain condition on submodules. Let θi : RR → 
miR : r → mir. Then θi is an R-homomorphism onto miR. So each miR is a 

factor module of RR. Since RR has the ascending chain con-dition on 

submodules it follows that miR has the ascending chain condition 
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on submodules. 

 

Similarly for the descending chain condition. 
 

 

Remark 5.2.14. For the ascending chain condition the above result is still true 

even if R does not have 1; for the descending chain condition the result is false. 
 

 

Corollary 5.2.15. If R has the ascending chain condition (respectively, the 

descending chain condition) on right ideals then so does the ring Mn(R). 
 

 

 

 

 
Proof. Consider Mn(R) as a right R-module in the natural way. Let Tij := {(rk ) Mn(R)|rk = 0 k = i, = j}. Then each Tij is an R-submodule of Mn(R) that is isomorphic to RR. So each Tij has the as-

cending chain condition on R-submodules. But Mn(R) = 

 

Corollary 5.2.12, Mn(R) has the ascending chain condition on R-submodules. 

Clearly, however, a right ideal of Mn(R) is also an R-submodule of Mn(R). 

So Mn(R) has the ascending chain condition on right ideals. 

 

Similarly for the descending chain condition. 
 
 

Example 5.2.16. Let D be a division ring. Then Mn(D) has both the ascending 

chain condition and descending chain condition on right ideals, since 0 and D 
are the only (right) ideals of D. 

 

Exercise 5.2.17. Let S be a subring of Mn(Z) such that S contains the identity of 

Mn(Z). Show that S is a ring with the ascending chain condition on right ideals. 

 

Definitions 5.2.18. A module with the ascending chain condition on sub-

modules is called a Noetherian
1
 module. A module with the descending chain 

condition on submodules is called an Artinian
2
 module. A ring with the as-

cending chain condition on right ideals is called a right Noetherian ring. A ring 
with the descending chain condition on right ideals is called a right Artinian 
ring. Similarly for left Noetherian ring and left Artinian ring. 

 

Theorem 5.2.19. (The Hilbert Basis Theorem.) If R is a right Noetherian ring 
then so is the polynomial ring R[x]. 

 

 

1Amalie (Emmy) Noether (1883–1935) 
 

2Emil Artin (1898–1962) 

 

34 

 
n 

i,j=1 
T

ij 
. So by 



 
 
 
 
 

(( Seventh lecture )) 
6 Semi-Simple Artinian Rings 

 

6.1 Nil and Nilpotent Subsets 
 

Definitions 6.1.1. Let R be a ring. 
 

(i) x   R is nilpotent if x
n
 = 0 for some n ≥ 1. 

 
(ii) A subset S R is a nil subset if every element of S is nilpotent. Thus S 

nil, x S n(x) N such that x
n(x)

 = 0. 
 

(iii) S is a nilpotent subset if S
n
 = 0 for some n ≥ 1. Recall that 

     Sn = s1s2 . . . sn  si     S   . 
           
           
           

     finite      
      0 1    

Examples 6.1.2. (i) In M2(Z),   0 0 is a nilpotent element. 
(ii) In Z , 2Z is a nilpotent ideal.      

4Z 
      

  4Z       

Lemma 6.1.3. (i) If I, K are nilpotent right ideals than so are I + K and 

RI.          
 

(ii) Every nilpotent right ideal is contained in a nilpotent ideal. 
 

Proof. (i) There are positive integers r, s such that I
r
 = K

s
 = 0. Con-sider (I + 

K)
r+s−1

 = (I + K)(I + K) . . . (I + K). This, when expanded, has 2
r+s−1

 terms, 

each of which has the form T = A1A2 . . . Ar+s−1, where each Ai = I or K. So in 

a typical term either I occurs ≥ r times or K occurs ≥ s times. 

 

Suppose I occurs ≥ r times. Then T K
i
I
k
 where i ≥ 0, k ≥ r, with the 

convention K
0
I = I. We have used the fact that I K I. So T = 0. So every term in 

the expansion of (I + K)
r+s−1

 vanishes. So I + K is nilpotent. 
 

(RI)
r
  = (RI)(RI) . . . (RI) = R(I R) . . . (I R)I RI

r
  = 0. 

 

(ii) Let I r R. If I is nilpotent then so is I + RI by (i). Clearly I + RI R and I I 
+ RI.  
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Definition 6.1.4. The sum of all nilpotent ideals of R is calles the nilpotent 

radical of R, usually denoted N (R). 

It follows from Lemma 6.1.3 that 
 

  
N (R) = nilpotent right ideals = nilpotent left ideals. 

 

Clearly N (R) is a nil ideal. It is not, in general, nilpotent. 
 

Exercise 6.1.5. Let R be a commutative ring. Show that N (R) = the set of all 
nilpotent elements of R. (Hint: use the Binomial Theorem.) Give an example to 
show that this is false in general for non-commutative rings. 

 

Example 6.1.6. (A Zassenhaus Algebra.) Let F be a field, I the interval (0, 1), R 

the vector space over F with basis {xi|i I}. Define multiplication on R by 
extending the following product on basis elements: 

xixj  := 

x
 +j if i + j < 1, 

i
0 if i + j ≥ 1. 

Thus every element of R can be written uniquely in the form i  I 
a

i

x
i
, 

a F , with a  = 0 for all but a finite number of indices i. Check that R is 
i i  

nil but not nilpotent and that N (R) = R. 

 

6.2 Idempotent Elements 
 

Definition 6.2.1. An element e R is idempotent if e = e
2
. 

 

Examples 6.2.2. (i) In any ring, 0 is an idempotent element. If 1 exists, it is 

idempotent. 

 

(ii) In M2(Z), 

1 0 0 0  

0 0 and   0 1 are idempotents. 
Lemma 6.2.3. Let e be an idempotent in a ring R. Then R = eR K, where K 

= {x − ex|x R} r R.  

Proof. Clearly K r R. Now x R x = ex + (x − ex) eR + K. If z eR ∩ K then 

z = ea = eb − b for some a, b R. Then 
 

e
2
a = e

2
b − eb = eb − eb = 0 

 

and 

e
2
a = ea = 0. 

 

So z = 0. So R = eR K  
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Corollary 6.2.4. (Peirce Decomposition.) Let R be a ring with 1 and e R an 

idempotent. Then R = eR (1 − e)R 
 

Proof. K = (1 − e)R in the above if R has 1.  
 

Remark 6.2.5. e is idempotent 1 − e is idempotent. 
 

Exercise 6.2.6. Take an idempotent in M2(Z) and write down a Peirce 
decomposition. 

 

Proposition 6.2.7. Let R be a ring with 1. Suppose R = 
 n     

 j=1 
I
j 
, a direct 

sum of right ideals. Then we can write 1 = 
e + · · · + e  with e 

 
I 

j 
having 

1 n  j   

the following properties: 
 

(i) each ej  is an idempotent; 
 

(ii) eiej  = 0 for all i = j; 
 

(iii) Ij  = ej R for j = 1, . . . , n; 
 

(iv) R = Re1     · · ·  Ren, a direct sum of left ideals. 
 

Proof. (i) and (ii). For each j we have 
 

ej  = 1ej  = e1ej + · · · + ej−1ej + e
2

j + ej+1ej + · · · + enej . 
 

So 
 

ej − e
2
j = e1ej + · · · + ej−1ej + ej+1ej + · · · + enej Ij ∩ Is = 0 

s=j  

by directness. So ej  = e
2
  and esej  = 0. Since the sum of the Ij  is 
j s=j 

direct, we have eiej  = 0 for all i = j. 

 

(iii), (iv). Exercises.  Example 6.2.8. Take R = Mn(Z), ej = Ejj matrix unit. 

Then 1 = e1 +  

· · · + en  and R = e1R   · · ·  enR = Re1     · · ·  Ren. 
 

Definition 6.2.9. Let R be a ring. The centre of R is 
 

C(R) := {x R| r R, xr = rx}. 
 

C(R) is a subring of R but not, in general, an ideal. 
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Exercise 6.2.10. Let F be a field. Find C(M (F )). Show that C(M (F )) = 
n n 

F as rings. 
 

Proposition 6.2.11. Let R be a ring with 1, with R = A1  · · · Ak a direct sum 

of ideals. Let 1 = e1 + · · · + ek , ej Aj . Then 

(i) ej     C(R) for j = 1, . . . , k; 
 

(ii) e
2
j = ej  for all j; eiej  = 0 for i = j; 

 

(iii) Aj  = ej R = Rej ; 
 

(iv) ej  is the identity of the ring Aj . 
 

Proof. (ii) follows from Proposition 6.2.7. 
 

(iii) Aj  = ej R = Rej  as in Proposition 6.2.7 since Aj     r  R and AjR. 
 

(iv) Let x Aj . Then x = ej t1 = t2ej for some t1, t2. Then ej x = e
2
jt1 = ej t1 

= x and xej = t2e
2
j = t2ej = x. Thus xej = ej x = x for all x Aj . Since ej Aj , it 

follows that ej is the identity of the ring Aj . 
 

(i) Let x R. Then ej x = e
2
jx = ej (ej x) = (ej x)ej since ej x Aj and ej is the 

identity of Aj . Also xej = xe
2
j(xej )ej = ej (xej ) similarly. By 

associativity, ej x = xej  for all x R, so ej C(R).   

Definition 6.2.12. Such an ej C(R) is called a central idempotent. 

 

6.3 Annihilators and Minimal Right Ideals 
 

Definitions 6.3.1. Let = S MR. We define the right annihilator of S to be r(S) 

:= {r R|Sr = 0}. Clearly, r(S) r R. When S is a submodule of M , r(S) R. (S), the 
left annihilator of S, is defined analagously when  
M is a left R-module. 

 

In most applications, S R itself, and so we can consider both r(S) and (S). 
 

 

Definition 6.3.2. A non-zero right ideal M of a ring R is a minimal right ideal if 

whenever M M , M r R, it follows that M = 0. 
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If R has 1 then the minimal right ideals of R are precisely the irreducible 

submodules of RR. 
 

Lemma 6.3.3. Let M be a minimal right ideal of a ring R. Then either M 
2
 = 

0 or M = eR from some e = e
2
 M . 

 

Proof. Suppose M 
2
 = 0. Then a M such that aM = 0. aM r R and aM M 

since a M . So aM = M . Thus e M such that a = ae. a = 0 e = 0. Also a = ae = 

ae
2
. So a(e − e

2
) = 0. 

 

Now consider M ∩r(a). M ∩r(a) r R and M ∩r(a) M . So M ∩r(a) = 0 or M . 

Suppose for a contradiction that M ∩ r(a) = M . So M r(a), so aM = 0. Thus M 

∩ r(a) = 0. 

But e − e
2

 M ∩ r(a) = 0, so e = e
2
. Now 0 = e

2
 eR. So eR = 0. But 

eR   r  R and eR   M since e   M . Thus eR = M as required.   

Example 6.3.4. Take R := 

Q Q 0 Q  

0 Q  
. 

Consider M1  :=   0 0 , M2  := 
0 0       

0 Q  .  Both M1, M2  are minimal right ideals.  Now M1
2
  = 0, M2  = eR 

 0 0      

where e :=   0 1  
. 

      
Definition 6.3.5. A ring with no non-zero nilpotent ideal and the descending 
chain condition on right ideals is called a semi-simple Artinian ring. 

 

Note that by Lemma 6.1.3(ii) and symmetry such a ring has no non-zero 
nilpotent right or left ideals. 

 

Remarks 6.3.6. (i) The left-right symmetry of semi-simple Artinian rings will be 
established later. 

 

(ii) We will justify the term “Artinian” by showing the existence of an 
identity. 

 
(iii) We shall not define “semi-simple” on its own, but in this context it can be 

thought of as meaning a direct sum of simple rings. 
 

Proposition 6.3.7. Let R be a semi-simple Artinian ring and I r R. Then I = 

eR for some e = e
2
 I. 
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Proof. By the minimum condition every non-zero right ideal of R con-tains a 

minimal right ideal. Hence, by Lemma 6.3.3, since R contains non non-zero 

nilpotent right ideal, every non-zero right ideal of R contains a non-zero 

idempotent. 

 

Now if I = 0 then the result is trivial with e = 0, so assume that I = 0. Let E 

be the set of all non-zero idempotents in I. By the above, E = . We claim that 

there is an idempotent e E such that I ∩ r(e) = 0. 
 

Suppose not. Let I ∩ r(z) be minimal in the set S := {I ∩ r(x)|x E}. By 

assumption, I ∩ r(z) = 0. So I ∩ r(z) contains a non-zero idempotent z . So (z )
2
 

= z , zz = 0. Consider z1 = z + z − z z. z1 I since z, z I. We have 
 

z1z = (z + z − z z)z = z + z z − z z = z. 

So, in particular, z1  = 0. 
 

z1z  = (z + z − z z)z  = (z )
2
  = z , 

 

so 

z1
2
  = z1(z = z − z z) = z + z − z z = z1. 

Thus z1 E. We shall now show that 
 

r(z1) ∩ I    r(z) ∩ I (6.3.1) 

t r(z1) ∩ Iz1t = 0zz1t = 0zt = 0, since zz1  = zt   r(z) ∩ I. 
 

Also, z r(z1) ∩ I but z r(z) ∩ I since z1z = z = 0. This establishes (6.3.1). 

But (6.3.1) contradicts the minimality of r(z) ∩ I. This proves our claim. So 

there is an e E such that I ∩ r(e) = 0. 
 

Now define K := {x − ex|x I}. Then K r R, K I, and eK = 0. So K I ∩ r(e) = 0. 

Thus x = ex for all x I. Hence I eR. But clearly eR I since e I and I r R. So I = 
eR as required.  

 

Corollary 6.3.8. Let R be a semi-simple Artinian ring and A R. Then there 

is an e = e
2
 A such that A = eR = Re. 

 

Proof. By Proposition 6.3.7, A = eR for some e = e
2
 A, since A r R. Let K 

:= {x − xe|x A}. Then K R, since A R. Also, Ke = 0, so 
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KeR = 0 and K
2
 = 0 since K A = eR. So K = 0 as R has no non-zero nilpotent 

left ideal. Thus x = xe for all x A. So A Re. But Re A since e A and A R. Thus 
A = eR = Re.  

 

Corollary 6.3.9. A semi-simple Artinian ring has identity. 
 

Proof. Take A = R in Corollary 6.3.8.  
 

Theorem 6.3.10. The following are equivalent for any ring R: 
 

(i) R is semi-simple Artinian ring; 
 

(ii) R has 1 and RR  is completely reducible. 
 

Proof. (i) (ii). By Corollary 6.3.9 R has 1. Let I r R. By Proposition 6.3.7 I = 

eR for some e = e
2
 I. By Peirce Decomposition, Corollary 6.2.4,  

I is a direct summand of R. So every submodule of RR is a direct summand of RR. 

So by Theorem 4.2.6, RR is completely reducible. 

Then 1 = 1 + · · · +  n for  i 
λ

i   

(ii)   (i).  We have R =  λ  Λ Iλ, Iλ  an irreducible submodule of RR. 
x   x some x I  . Now for any x  R, 

   x = 1x = x1x + · · · + xnx   Iλ1    · · ·  Iλn , 

so R = Iλ1  · · ·  Iλn and |Λ| < ∞.  So by Corollary 5.2.12, RR  has the 
descending chain condition on R-submodules, i.e. R has the descending chain 
condition on right ideals. Now let T be a nilpotent right ideal of R. Then 

R = T 
 

K for some K 
r 

R 
by 

Theorem 4.2.6. We have 1 = t + k for some 
t 

 

T  

 

K  t    n = 0 for some n 
≥ 

1. Thus (1 
− 

k) n = 0.  k  nilpotent so t  

  ,   .  is n 
= 0, 1 = nk − · · ·  k 

n      

So 1 − nk + · · · ± k  K. So K = R, so T = 0 as 
required.  

 

Remark 6.3.11. Note that we have shown R = I1 · · · In, a finite direct sum of 
minimal right ideals, when R is semi-simple Artinian. 

 

Corollary 6.3.12. A direct sum of matrix rings over division rings is a semi-
simple Artinian ring. 

 

Proof. It was shown in Theorem 4.2.6 that for such a ring RR is com-pletely 
reducible.  
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(( Eighth lecture )) 
6.4 Ideals in Semi-Simple Artinian Rings 

 

Proposition 6.4.1. Let R be a semi-simple Artinian ring: 
 

(i) Every ideal of R is generated by an idempotent lying in the centre 
of R. 

 
(ii) There is a 1-1 correspondence between ideals of R and 

idempotents in C(R). 
 

Proof. (i) See proofs of of Corollary 6.3.8 and Proposition 6.2.11. 

 

(ii) For each e C(R) define f (e) := eR R. Check that f is the required 1-1 
correspondence.  

 

Definition 6.4.2. I R is a minimal ideal if I = 0, I I, I R I  = 0. 

 

Theorem 6.4.3. Let R be a semi-simple Artinian ring. Then R has a finite 
number of minimal ideals, their sum is direct, and is R. 

 

Proof. Note that at least one minimal ideal exists since R has the de-

scending chain condition on right ideals . Let S1 be a minimal ideal of R. Then 

by Proposition 6.4.1, S1 = e1R = Re1, e1 = e
2
1 C(R). Note that (1 − e1)

2
 = 1 

− e1, 1 − e1 C(R), and we have a direct sum of ideals  

R = S1     T1, T1  := (1 − e1)R = R(1 − e1). (Note that T1  is two-sided.) 
 

If T1 = 0, T1 contains a minimal S2 R. As above, R = S2 K, K R. Now 
 

T1  = T1 ∩ R = T1 ∩ (S2 K) = S2 (T1 ∩ K) = S2 T2 
 

by the Dedekind Modular Law. We have R = S1 T1 = S1 S2 T2. If T2 = 0 
proceed inductively. 

 

We have T1 T2 T3 . . . , so by descending chain condition this pro-cess must 

terminate. It can only stop when some Tm = 0. At this stage we have R = S1 · · 

· Sm, a finite direct sum of minimal ideals. 
 

Now let S be a minimal ideal of R. We have SR = 0 since R has 1. So SSj = 

0 for some j, 1 ≤ j ≤ m. Now SSj R and SSj S, SSj Sj . Since both S and Sj are 

minimal, we have S = SSj = Sj .  
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6.5 Simple Artinian Rings 
 

Let R be a simple ring. Consider R
2
. R

2
 R so R

2
 = 0 or R. Suppose R

2
 = 0. 

Then xy = 0 for all x, y R. So any additive subgroup of R is an ideal of R. Thus 
R has no additive subgroups other than 0 and R. Thus the additive group of R 
must be cyclic of prime order p; the ring structure of 

 
R is completely determined: R = {0, 1, . . . , p − 1} with addition modulo p, 
multiplication identically 0. 

 

Thus, when studying simple rings, we assume that R
2
 = R. Therefore, in this 

case, N (R) = 0. 
 

Note that a simple Artinian ring is semi-simple Artinian. 
 

Lemma 6.5.1. Let R be a semi-simple Artinian ring and 0 = I R. Then 
 

I itself is a semi-simple Artinian ring. In particular, when I is a minimal 
ideal, I is a simple Artinian ring. 

 

Proof. We claim that K r  I K r  R. 

 

We have I = eR = Re where e = e
2

 I by Corollary 6.3.8. Now k K, 
r E kr = (ke)r since e is the identity of I and k I. So kr = k(er) K since er eR 
= I. This proves the claim. 

 

It follows that I considered as a ring has the descending chain condition on 
right ideals and no non-zero nilpotent ideal. 

 

If I is minimal then by the above it must be a simple Artinian ring. (Note that 

I
2
 = I since I

2
 = 0 – i.e., I is a simple ring of the type that we are considering.  

 
 

Theorem 6.5.2. Let R be a semi-simple Artinian ring. Then R is a direct 
sum of simple Artinian rings and this representation is unique. 

 

Proof. By Theorem 6.4.3 and Lemma 6.5.1 above we have R = S1  
· · · Sm, where the Si are minimal ideals of R, hence simple Artinian rings. The 

uniqueness follows from the fact that the Si are precisely the minimal  
ideals of R.  
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6.6 Modules over Semi-Simple Artinian Rings 
 

Proposition 6.6.1. Let R be a semi-simple Artinian ring. Let MR  be unital 
   r 

R. and irreducible. Then M = I as R-modules, where I  
 K   

Proof. M = R , K a maximal right ideal of R, by Exercise Sheet 3. By  

Corollary 6.2.4 and Proposition 6.3.7 (or by Theorem 6.3.10 and Theorem 
     

 
 

r 
   

  
  

 
 

        K    
4.2.6), R = K 

 
I for some I 

 
R. Therefore, 

R 
= I (given r 

 
R, r = k +x, 

        →   K     

k  K, x  I unique; consider r  x). So M = 
   = I as R-modules.        

 

Theorem 6.6.2. Every non-zero unital module over a semi-simple Artinian 
ring is completely reducible. 

 

Proof. Let R be semi-simple Artinian. We have R = I1 · · · In, a direct sum 

of minimal right ideals of R (see Remark 6.3.11). Let 0 = MR be unital and let 

m M . Then m = m1 mI1 + · · · + mIn. We claim that each mIj is either 
irreducible or 0. 

 

Consider the map θ : Ij → mIj given by θ(x) = mx for x Ij . Clearly θ is an R-

homomorphism onto mIj . ker θ is a submodule of (Ij )R. So ker θ = 0 or Ij . This 

implies that either θ is an isomorphism or the zero map. This proves the claim. 
 
 

Thus, m irreducible submodules.  So M = irreducible submod- 

ules. So 

M 

is 

completely reducible. 

     
6.7 The Artin-Wedderburn Theorem 

 

Definitions 6.7.1. Let M be a right R-module.  An R-homomorphism θ : 
 

M → M is called an R-endomorphism. The set of all R-endomorphisms of  

M is denoted by ER(M ) or simply E(M ). On ER(M ) we define a sum and 

product as follows. Let θ, φ ER(M ). Define θ + φ and θφ by  
(θ + φ)(m) := θ(m) + φ(m) 

 

(θφ)(m) := θ(φ(m)) 
 

for m M . Check that (θ + φ), (θφ) ER(M ). It is routine to check that ER(M ) is 

a ring under these operations. 
1  

M 
2 

as R-modules then 
E

R 1  

Exercise 6.7.2. Show that if M =   (M ) = 

ER(M2) as rings. 
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More generally, 
 

Definitions 6.7.3. For right R-modules X and Y denote the set of all R-

homomorphisms X → Y by HomR(X, Y ). For α, β HomR(X, Y ) define 
α + β as above. HomR(X, Y ) is easily seen to be an Abelian group. 

 

Definitions 6.7.4. Let V = V1 · · · Vn, W = W1 · · · Wm be right R-modules. Let 

εj : Vj → V be the injection map εj (vj ) := (0, . . . , 0, vj , 0, . . . , 0) for vj Vj 

(the vj is in the jth place). 
 

Let πi : W → Wi  be the projection map, πi(w1, . . . , wm) = wi, wk Wk . 

 

For a module M , write M 
(n)

  for M · · · M (n times). 
 

Lemma 6.7.5. Let V = V1    · · · Vn, W = W1    · · · Wm be right R-modules. 
 

(i) If φij HomR(Vj , Wi) are given for each 1 ≤ i ≤ m, 1 ≤ j ≤ n, then we 

can define φ HomR(V, W ) by  
φ

11 
. 

φ(v , . . . , v ) := . 

1 m . φ
m1 

 

. . .  
.
 . . 

 
. . . 

 

.. .. φ
1n v1 
. . 

φ
mn vn 

  

= (φ11v1 + · · · + φ1nvn, . . . , φm1v1 + · · · + φmnvn). 
 

(ii)  .
. .

 . . .
.  

HomR(V, W ) = 

  HomR(V1 , W1)   . . . HomR(Vn, W1)  

 
 .  . 

 HomR(V1, Wm)  . . . HomR(Vn, Wm) 

      
as Abelian groups. 

 

(iii) In particular, for a right R-module M we have 

 R(M   ) = .
. .

 . . 
   ER(M )  . . . 

E (n)  .  
 ER(M )  . . . 

     
as rings. 

 

ER(M ) 
. 

. 

.  

ER(M ) 
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Proof. (i) Easy to see that φ as defined above does indeed belong to 

HomR(V, W ). 
 

(ii) Let ψ HomR(V, W ). Define ψij := πiψεj . Then ψij HomR(Vj , Wi). 
Define a map 

Θ : HomR(V, W )  .. 
.
 . . .

. 
 

  HomR(V1 , W1)   . . . HomR(Vn, W1)  
  .  . 

  
→

  HomR(V1, Wm)  . . . HomR(Vn, Wm) 

      
by Θ(ψ) := (ψij ). It is easy to see that Θ is an additive group homomorphism. 

Θ is injective: 
 

ψij  = 0  i, j πiψεj  = 0 for all i, j 
 

ψεj = 0 for all j 
ψ = 0 

 

Θ is surjective: let (θij  be given with θij     HomR(Vj , Wi). Define θ : V → W 
by 

   

φ11    . . .   φ1n 
 

   v1  
   .. . . .  
φ(v1 , . . . , vm) := 

 . . .  

 . .. 
v.n  

  φ m1    . .  .   φ mn 

       
Then θ HomR(V, W ) by part (i). For vj Vj  we have 

 

πiθεj (vj ) = πθ(0, . . . , 0, vj , 0, . . . , 0) 

= πi(θ1j (vj ), . . . , θmj (vj ))  

= θij (vj ) 
 

So πiθεj  = θij . Hence Θ is an isomorphism. 

 

(iii) We must check that when V = W = M 
(n)

  then Θ defined above is a 
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ring homomorphism. Let θ, φ ER(M 
(n)

 ). We have 
 

(θφ)ij  = πi(θφ)εj  

= πiθ idM (n) φεj 

n 

= πiθ εk πk φεj  
k=1  

n 

= (πiθεk )(πk φεj )  
k=1  
n 

= (θik )(φkj )  
k=1  
n 

((θφ)ij ) =(θik )(φkj )  
k=1  

Θ(θφ) = Θ(θ)Θ(φ) 
 

So Θ is a ring homomorphism.  
 

Note that if θ : MR → KR is an isomorphism then the inverse map exists and 
is an isomorphism from K onto M . 

 

Corollary 6.7.6. (Schur’s Lemma.) Let R be a ring and MR an irreducible 

module. Then ER(M ) is a division ring. 
 

Proof. Let 0 = θ ER(M ). We must show that θ is an isomorphism. θ is 
injective since ker θ is a submodule of M , so ker θ = 0 or M . But ker θ = M θ 
= 0, a contradiction, so ker θ = 0 and θ is injective. 

 

θ is surjective since θ(M ) is a submodule of M . As above, θ(M ) = 0, so 
θ(M ) = M and θ is surjective. 

 

Thus θ is an isomorphism. Thus every non-zero element of ER(M ) has an 

inverse, and so ER(M ) is a division ring.  
 

Lemma 6.7.7. Let R be a simple ring with R
2
 = R. Then any two minimal 

right ideals of R are isomorphic as R-modules. 
 

Proof. Let I1, I2 be two minimal right ideals of R. Then r(I1) R and r(I1) = 

R. So r(I1) = 0, so I1I2 = 0. So x I1 such that xI2 = 0. xI2 r R 
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and xI2 I1 since I1 r R. So xI2 = I1. Now define a map θ : I2 → I1 by θ(r) = xr for 

r I2. Check that ker θ = 0 so that θ is an isomorphism from I2 onto xI2 = I1.  
Lemma 6.7.8. Let R be a ring with 1. Then R 

E 
(R  ) as rings.  

= R R 

 

Proof. Let x R. Define ρx ER(RR) by ρx(r) = xr for r R. Fopr r, s R, 
 

ρx(r + s) = x(r + s) = xr + xs = ρx (r) + ρx(s) 
 

and 

ρx(rt) = x(rt) = (xr)t = ρx(r)t. 
 

So we do indeed have that ρx ER(RR). 
 

Now define Θ : R → ER(RR) by Θ(x) = ρx for x R. We claim that Θ is an 

isomorphism of rings. Let x1, x2 R. Then for any r R, 
 

ρx1+x2 (r) + (x1 + x2)r = x1r + x2r = ρx1 (r) + ρx2 (r) = (ρx1 + ρx2 )(r), 
 

so ρx1+x2 = ρx1 + ρx2 , and hence Θ(x1 + x2) = Θ(x1) + Θ(x2). Also 
 

ρx1x2 (r) + (x1x2)r = x1(x2r) = ρx1 (ρx2 (r)) = (ρx1 ρx2 )(r), 
 

so Θ(x1x2) = Θ(x1)Θ(x2). Θ is injective since ρx = 0 ρx(1) = x1 = 0 x = 0. Θ is 

surjective: let φ ER(RR). Let y := φ(1) R. Then φ(r) = φ(1r) = yr = ρy (r), for 

all r R. So φ = ρy . Thus Θ is an isomorphism of rings.  

 

Remark 6.7.9. If we work with left modules then we would have to define ρx(r) 

= rx. But then we get an anti-isomorphism between R and ER(RR): Θ(xy) = 

Θ(y)Θ(x). To get an isomorphsim we need to write our maps on the right. 

 

Theorem 6.7.10. (The Artin-Wedderburn Theorem.) R is semi-simple Ar- 

tinian if and only if R = S 
1  · · ·  

S 
m 

, where S 
i  ni i 

) for some integers    = M (D 

ni  and division rings Di.          
 

Proof. R = S1  · · · Sm, Si simple Artinian by Theorem 6.5.2. Si = I1 

· · · Ini , a direct sum of minimal right ideal, for some integer ni, by Remark 
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6.3.11. But I 
j  

I 
k 

for all j, k, by Lemma 6.7.7. Thus S 
i 

= I 
1 · · · 

I 
1 i 

 =      (n 
summands). Thus,                   

     S 
i 

=  ((S ) 
Si 

) by Lemma 6.7.8        
      ESi   i          
       ESi  1          

       =    I
(n

i 

) 
         

       = M  ( E
Si 

(I )) by Lemma 6.7.5        

        ni    1         

= Mni (Di), 
 

where Di := ESi (I1) is a division ring by Schur’s Lemma.  
 

Theorem 6.7.11. A semi-simple Artinian ring is left-right symmetric. 
 

Proof. Right-hand conditions R is a direct sum of matrix rings over division 
rings left-hand conditions. 

 

For another proof, see Exercise Sheet 5, Question 7.  
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(( The ninth lecture)) 
          Wedderburn’s Theorem on Finite Division Rings 
 
 

 

In this chapter we prove that every finite division ring is a field. 

 

Our strategy is to let D be a finite division ring. We show 

that |D| = q
n
 for some q ≥ 2, n > 1. If we set D := D\{0} then D is 

not an Abelian group. Counting elements in each conjugacy class of D we get an 
equation  

 

 

q
n
 − 1 = q − 1 + qn(a) − 1 . 

n(a)|n,n(a)=n 

 

We then show that such an equation is impossible on number theoretic grounds. 
 
 

 

7.1 Roots of Unity 
 

Definitions 7.1.1. (i) θ is called a primitive nth root of unity if θ
n
 = 1 and θ

m
 = 

1 for all m < n, where m and n are integers. 
 

(ii) Φn(x) := (x − θ), where the product is taken over all primitive nth 

roots of 

unity is  called the nth  cycloto mic p olyno mial .  

   
We note that the primitive nth roots of unity exist because of y  = 

e
2πki/n

     C. Thus   

  Φ1 (x) = x − 1 

  Φ2 (x) = x + 1 

  Φ3(x) = x
2
 + x + 1 

  
Φ

4 (x) = x
2
 + 1 

 

Lemma 7.1.2. Every cyclotomic polynomial is monic with integer coe -
cients. 

 

Proof. First note that 
 

x
n
 − 1 = Φd(x). (7.1.1) 

 
d|n 
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q − 1 



 
 
 
 

 

Now we prove our claim by induction on n. If n = 1, Φ1(x) = x − 1. So, assume 

all Φk (x) monic with integer coe cients for k < n. Now we can write 
 

x
n
 − 1 = Φn(x) Φd(x).  

d|n,d=n 
 

By the induction hypothesis we can write x
n
 − 1 = Φn(x)f (x), where f (x) is 

monic with coe cients in Z. Therefore, we may assume that 
 

f (x) = x  + a −1x 
−1

 + · · · + a1x + a0, 
 

ai Z, and 

Φn(x) = bmx
m

 + bm−1x
m−1

 + · · · + b1x + 

b0, bi C. We see that 
 

x
n
 − 1 = bmx

m+
   + (bm−1 + bma −1)x

m+
 
−1

 + · · · + a0b0. 
 

Comparing these two polynomials, we have bm = 1, so Φn is monic; m+ = n; 

bm−1 + bma −1 = 0, so bm−1 = −1 · a −1 Z. By continuing this method, we see 

that bi Z for 0 ≤ i ≤ m.  
 

Lemma 7.1.3. If d|n and d = n then 

x
n − 1 

Φ
n

(x)
 xd − 1   

in the sense that the quotient is polynomial with integer coe cients. 
 

Proof. By (7.1.1) we can write 

xd − 1 = k| d Φk (x) 
. 

x
n 

1  d n Φd(x) 

 −  |    
Because every divisor of d is a divisor of n, we have 

 

x
n
 − 1 = Φn(x) Φd (x) 

xd − 1  d ||  
n,d d 

 
n  

and so 
x
xd −

−
1

1
  = Φn(x)f (x), where  

d ||  

f (x) = Φd (x). 
n,d d 
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So f (x) is a monic polynomial in Z[x] by the previous lemma. So 

x
n − 1 

Φ
n

(x)
 xd − 1  

 

 

Lemma 7.1.4. Let q, n, m be positive integers, q > 1. Then 
 

q
m

 − 1|q
n
 − 1 m|n. 

 

Proof. ( ). Evident. 

 

( ). We may assume that n > m. Then n = km + r, 0 ≤ r < m, k > 0. Now 
 
 

 q
n
 − 1 = q

km
q

r
 − 1         

 

q
m

 − 1 q
m

 − 1 
        

          

  = q
km

q
r
q

r
 + q

r
 − 1       

   q
m

 − 1         

  = q
r
((q

m
)
k
 − 1 + q

r
 − 1      

  

q
m

 − 1 q
m

 − 1 

    

        

By our assumption, the LHS is an integer, and 
 q

r
 ((q

m
 )

k
 −1 

Z, so 
q

r
 −1 

Z,  q
m

−1  q
m

 −1   
so r = 0. Thus m|n.  

 

7.2 Group Theory 
 

Definitions 7.2.1. Let G be a group. We say that x, y G are conjugate if a G 

such that x = a
−1

ya, and so we can define an equivalence relation of conjugacy, 

and the corresponding conjugacy classes: x
G

 := {a
−1

xa|a G}. We define 
 

C (x) = {a   G|ax = xa} to be the centralizer of x in 

G. The centre of G is 

 

Z(G) := {g G| h G, gh = hg}. 
 

Proposition 7.2.2. For G a group, x G, C (x) is a subgroup of G. 
 

Theorem 7.2.3. Let G be a finite group. Then |x
G

| = |G : C (x)|. 
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Proof. Let a, b G. Then 
 

a
−1

xa = b
−1

xb xab
−1

  = ab
−1

x 

(ab
−1

)   C (x) 
C (x)a = C (x)b 

 

So there are as many elements in x
G

  as there are cosets of C (x).  

 

7.3 Finite Division Rings 
 

Lemma 7.3.1. Let K be a non-zero subring of a finite division ring D. Then 
K is also a division ring. 

 

Proof. Exercise. Need 1D K and x
−1

 K for x K, x = 0.   

Corollary 7.3.2. The centre of a finite division ring is a field. 
 

Lemma 7.3.3. Let D be a finite division ring with centre C. Then |D| = q
n
 

where q = |C| > 1 and n is some positive integer. 
 

Proof. C is a field. We can view D as a vector space over C. Let n = dimC 

D, with d1, . . . , dn a basis for D over C. So every element of D is uniquely 

expressible as c1d1 +· · ·+cndn with ci C. So we have |D| = q
n
.  

 
Theorem 7.3.4. (Wedderburn 1905.) A finite division ring is necessarily a 
field. 

 

Proof. Let D be a finite division ring with centre C, |C| = q. Then |D| = q
n
, 

q ≥ 2, n ≥ 1, by Lemma 7.3.3. We want to show that D = C, or, equivalently, 
that n = 1. 

 

Assume that n > 1. Let a D , C(a) := {x D |xa = ax}. Then C(a) is a subring 

of D. By Lemma 7.3.1, it is a division ring with C(A) C. So |C(a)| = q
n(a)

 for 
some n(a) ≥ 1. C (a) := C(a)\{0} is a multiplicative subgroup of D . We have |C 

(a)| = q
n(a)

 − 1, |D | = q
n
 − 1. By Lagrange’s Theorem, q

n(a)
 − 1|q

n
 − 1. 

Lemma 7.1.4 implies that n(a)|n. Theorem 7.2.3 applied to D implies that the 
number of elements conjugate to a = the index 

of C (a) in D  = q
n
 −1 . Now a 

 
C (a) 

 
n(a) = n. By counting elements 

of D : 
qn(a)−1       
      q

n 
 

 

q
n
 − 1 = q − 

1 +
 n(a)|  

− 1 

, (7.3.1)  qn(a) − 1  
n,n(a)=n 
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where the sum is carried out for one a in each conjugacy class for elements not  

in the centre. Now Φn(q) = q
n
 −1 by Lemma 7.1.2; n(a) = n by 

Lemma 7.1.3. By (7.3.1), 
 

Φn(q) = q − 1. 

Φ (q) q
n
 −1  

n qn(a)−1 
 
 

(7.3.2) 
 

We have Φn(q) = (q − θ), θ a primitive nth root of 1. So |Φn(q)| =  
|q − θ | > q − 1 since n > 1. This contradicts (7.3.2). So the assumption n > 

1 is false, and D = C is a field.  

 

To answer the question of what finite fields look like, we need Galois 
Theory. 
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(( tenth lecture)) 
8 Some Elementary Homological Algebra 

 

In this section all rings have 1 and all modules are unital. 

 

8.1 Free Modules 
 

Definitions 8.1.1. A right R-module F is free if 
 

(i) F is generated by a subset S F ; 
 

(ii) i siri = 0 ri = 0 for all such finite sums with si S, ri R. 
 

We say that free basis for F . (Convention: {0} is the free module generated by 
.) 

 

An element of F has a unique epression as s1r1 + · · ·+ sk rk . A typical free 

module is isomorphic to (R · · · R . . . )R. FR free and finitely generated 
 R  

(R 
· · · 

R) 
R 

(a finite direct sum). F  =   
 

The Z-module n
Z

Z , n > 1, cannot be free: for suppose that a¯ = a + nZ is  
¯ 

an element of a free basis. Then an¯ = 0, with n = 0, a contradiction. 

 

8.2 The Canonical Free Module 
 

Definition 8.2.1. Let A be a set indexed by Λ.  Let FA  be the set of all 
formal sums  

       
  Λ  aλ 

 many rλ = 0  
 λ   

  aλrλ   A, rλ     R, finitely 
  

 

      

         
with

λ  Λ 

a
λ
r
λ 

=  
Λ 

a
λ
s

λ 
       

λ   rλ = sλ  for all λ   Λ. We make FA  into the 

 
        
  

 

   

 

 

       

canonical free right R-module by defining 
 

  
aλrλ + aλsλ := aλ(rλ + sλ) 

 

and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 

 

 

aλrλ r := aλ(rλr) 
 

A is a free basis for FA; we identify a A with a1 FA. 
 

Proposition 8.2.2. Every right R-module is the homomorphic image of a 
free right R-module. 
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Proof. Let M be a free right R-module. Index the elements of M and form the 

free module FM , considering M merely as a set. Elements 

of FM  are formal sums of the form (mi)ri, mi M , ri R. Define  

  
θ : FM  → M :   (mi)ri  →miri     M . This map is well-defined and is an 
R-homomorphism by the definition of FM  

 

8.3 Exact Sequences 
 

Definitions 8.3.1. Let Mi  be a sequence of right R-modules and fi  a se- 

quence of R-homomorphisms Mi  → Mi−1. The sequence (which may be 
finite or infinite)    

f
i+2 

f
i+1 fi 

f
i−1 

· · · −→ Mi+1 −→ Mi  −→ Mi−1  −→ . . . 

is said to be exact if im fi+1  = ker fi for all i.  A short exact sequence is an 
exact sequence of the form    

 

0 −→ M  −
f
→ M −→

g
 M −→ 0. 

 

In a short exact sequence, since 0 −→ M −
f
→ M is exact, ker f = 0 and so f is 

a monomorphism (an injective homomorphism). Since M −→
g
 M −→ 0 is 

exact, im g = M and g is an epimorphism (a surjective homomorphism). 
 

 

im f  = f (M ) 
 

M , so M is isomorphic to a submodule of M . M  =  
Also   M  = M =  

M
  . 

   

          

    ker g  im f 

Given modules A and B we can construct the short exact sequence 

   i  π    A 
 

0 −→ B −→ A −→ 

 

−→ 0,  B 
 

where i is the inclusion map and π the natural projection. 
 

Proposition 8.3.2. Given a short exact sequence 
 

α β 

0 −→ A −→ B −→ C −→ 0 
 

of right R-modules the following are equivalent: 
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(i) im α is a direct summand of B; 
 

(ii) an R-homomorphism γ : C → B with βγ = idC ; 
 

(iii) an R-homomorphism δ : B → A with δα = idA. 
 

Proof. (i) (ii). Let B = im α B1, B1 a submodule of B. So B = ker β B1. Let 

β1 := β|B1 . We have 

C = β(B) = β(ker β   B1) = βB1  = β1B1, 
 

so β1 is an epimorphism. Also ker β1 ker β ∩ B1 = 0. Thus β1 is an iso-

morphism of B1 onto C. Define γ := β1
−1

 : C → B. Then βγ = idC . 
 

(ii) (i). We shall show that B = ker β γβ(B). If b B, b = (b − γβb) + γβ(b). b 

− γβ(b) ker β since 
 

β (b − γβ(b)) = β(b) − βγβ(b) = β(b) − idC β(b) = β(b) − β(b) = 0, 
 

and if z ker β ∩ γβ(B) then z = γβ(b) for some b B, and β(z) = 0. Thus 
 

0 = β(z) = βγβ(b) = β(b), 
 

so z = 0, B = ker β γβ(B) = im α γβ(B). 

 

Similarly, we can show the equivalence of (i) and (iii).  
 

Definition 8.3.3. We say that the short exact sequence 
 

α β       

0 −→ A −→ B −→ C −→ 0       
splits if any one (and hence all) of the above conditions holds.  

 
 

Note that if the above sequence splits then B = im α 
 1 

, B 
1 

C; i.e.,  B  = 
B A   C, an external direct sum.  

 

= 

 

8.4 Projective Modules 
 

Definition 8.4.1. A right R-module P is said to be projective if given any 
diagram of the form  

P  
   µ   
 

π 
 

 
  

    
      

A  B   0 exact 
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there is an R-homomorphism µ¯ : P → A such that µ = πµ¯, i.e. µ(x) = π( 
µ¯(x)) for all x P . 

 

P 

µ¯ 
 

    

 µ   
         

π   
 

  
    

       

A    B   0 exact 

Lemma 8.4.2. A free module is projective. 

Proof. Let F be a free module with a free basis {eα}. Consider 

  
 

F   

µ¯  µ   
         

π 
  

 
  

    
       

A    B   0 exact  

Let bα  := µ(eα).  As π is an epimorphism we can choose aα A such that 

bα  = π(aα). Define µ¯ : F → A by µ¯ ( α eαrα) := α aαrα, rα     R. Then µ¯ 

is an R-homomorphism F → A and  
 

   
πµ¯    α eαrα = π α aαrα 

      
      

  =  π(aα)rα  
  α    
      

  =  
b

α

r
α  

  α    
      

  =  µ(eα)rα  
  α  

eαrα    .   = µ  α 

       
So πµ¯ = µ.  

 

We shall see that a projective module need not be free. 
 

Lemma 8.4.3. Let Pα, α Λ, be right R-modules. Then α Λ Pα is pro-jective if 
and only if all Pα are projective. 
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jection map α  Λ 

P
α 

→
 

P
β 

. 
          → α  Λ  

Proof. Let iβ be the inclusion map Pβ  Pα; let pβ  be the pro- 

                  

(   ) Consider the diagram           
     α  f     

           Λ 

P
α     

                
   

 

  

π 
       

             

  A       B   0 exact  

This gives rise to diagrams               

         
P

α     
       

 

       

      fα   f iα     
                 

    
 π 

   
 

    
           
               

   A      B  0 exact   

Since each Pα  is projective there are R-homomorphisms fα  : Pα  → A such 
       

¯ 
 

 

        

 

    

    ¯ α  Λ α      α   
α  Λ fαpα. (This makes that f iα  = πfα. Define f :     α  Λ 

P
α  

→
 
A
 
by

 
f
 
= 

sense: for any z     P   we have p (z) = 0 for all except a finite number 
      

 
 

 
       

 
 

 
      

    πf     πf p  f i π f    

of α’s.) We have  =   α  Λ   α  α 

= 
α  Λ  α  α 

= 
 as required. 

(   ) For any β   Λ consider             

                  Pβ         
                

 

            

                            

                   fβ         
                            

            
π 

  
 

        
                      
                            

This gives rise to 

      A    

 

 B   0 exact     

                       
               fβ pβ         

                 α  Λ 
P

α         
          

 

f
¯  

 

  

 

        

                     
                          
        

 

   

π 
          

                     

      A            B     0 exact     
such  β  β . So β = β  β  β  

= 
β  and β ¯ β 

Since 

α  Λ 
Pα is projective, there is an R-homomorphism f :  

 ¯ ¯  
f p i f 

¯  
P  that πf = f p πf i  f i  

Pβ  is projective.        

Proposition 8.4.4. The following are equivalent:    

(i) P is a projective module;       

α Λ 

P
α 

→
 
A 

→ A. Thus  
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(ii) P is a direct summand of a free module; 
 

(iii) every short exact sequence 0 → M  → M → P → 0 splits. 
 

Proof. (iii) (ii). Consider the short exact sequence 
 

0 −→ KP  −→ FP  −→ P → 0, 
 

where KP  is the kernel of the canonical map FP  → P . Since this short exact 
P  

P 
 

K 
P 

. sequence splits we have F =   

 

(ii) (i). Follows from Lemma 8.4.2 and Lemma 8.4.3. 

 

(i) (iii). Consider 
 

       P 
     

µ¯ 
 

 

idP 
      
        
            

  

M 

f g 
   

      

0 

  

M 

  

P 

 

0 exact      
Since P is projective, there is an R-homomorphism µ¯ : P → M such that gµ¯ = 

idP . Thus the given short exact sequence splits.  
 

Theorem 8.4.5. The following are equivalent: 
 

(i) R is semi-simple Artinian; 
 

(ii) every unital right R-module is projective. 
 

Proof. (i) (ii). Let M  be a right R-module. By Theorem 6.6.2, 
 

M = λ Λ Mλ, each Mλ irreducible. Proposition 6.6.1 implies that each Mλ is 
isomorphic to a right ideal of R. A right ideal of R is a direct sum-mand of R 

since RR is completely reducible. So, by Lemma 8.4.2 and Lemma 8.4.3, right 
ideals of R are projective. So M is projective by Lemma 8.4.3. 

 

(ii) (i). Let I r  R. Consider the short exact sequence 
 

i π R 

−→ 0. 0 −→ I −→ R −→ 

 

I 

This short exact sequence splits since 
R

  is a projective R-module.  So R = 
I 

I K, K R. Thus I is a direct summand of R. So RR  is completely 
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reducible and thus R is semi-simple Artinian.  

 

If R is a ring with 1, then all right R-modules are free if and only if R is a 
division ring (Exercise Sheet 5, Question 8). 

 

Example 8.4.6. Projective free. Let R = 6
Z

Z , A = 
2
6
Z

Z , B = 
3
6
Z

Z . Then R = A 
B, and A and B are projective by Lemma 8.4.2 and Lemma 8.4.3. A, B cannot 
be free since they have fewer elements than R.  
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