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(( the first lecturer ))

1.1 Rings

Definitions 1.1.1. Let R be a non-empty set that has two laws of compo-sition
defined on it. (We call these laws addition and multiplication and use the
familian notatation.) We say that R is a ring (with respect to the given addition
and multiplication) if the following hold:

(i) a+bandab Rforalla,b R;
(i) a+t+b=b+aforalla,b R;
@ii) a+(b+c)=(@+b)+cforala, b, c R;
(iv) there existsanelement0 Rsuchthata+0=aforalla R;
(v) givena R there exists an element —a R such thata + (-a) = 0;
(vi) a(bc)=(ab)cforalla,b,c R;
(vii) (a+b)c=ac+bcforalla,b,c R;
(viii) a(b +c)=ab +acforalla,b,c R.

Thus, a ring is an additive Abelian group on which an operation of mul-
tiplication is defined, this operation being associative and distributive (on both
sides) with respect to the addition.

R is called a commutative ring if, in addition, it satisfies ab = ba for all a,
b R. The term non-commutative ring can be a little ambiguous. When applied
to a particular example it clearly means that the ring is not com-mutative.
However, when we discuss a class of “non-commutative rings” we mean ‘“not
necessarily commutative rings”, and it is usually not intended to exclude the
commutative rings in that class.

If there is an element 1 R such that 1a = al = a for all a R we say R has an
identity.



1.2 Examples of Rings

Example 1.2.1. The integers Z, the rational numbers Q, the real numbers R, the
complex numbers C all with the usual operations.

Example 1.2.2. R[x], the polynomial ring in an indeterminate x with coef-
ficients in R, with xr =rx forall r R.

Example 1.2.3. Mp(R) := {n x n matrices over the ring R}.

Example 1.2.4. Th(R) := {n x n upper-triangular matrices over the ring R}.

Example 1.2.5. Up(R) := {n x n strictly upper-triangular matrices over the ring
R}.

Example 1.2.6. F X1, . . ., Xn, the free algebra over a field F with generators
X1, - - ., Xp. The generators do not commute, SO X1X2X1X3 = X 1X2X3.

Example 1.2.7. A1(C), the first Weyl algebra, which is the ring of poly-nomials
in X and y with coe cients in C, where X, y do not commute but xy — yx = 1.
Example 1.2.8. Subrings of the above, such as J := {a + ib|a, b Z}.

1.3  Properties of Addition and Multiplication
We typically write a — b for a + (-b).
Proposition 1.3.1. The following hold for any ring R:

(i) the element0 R is unique;

(i) givena R, —ais unique;

(i) —-(-a)=aforalla R;

(iv) foranya,b,c R,a+b=a+cb=c;

(v) givena, b R, the equation x + a =b has a unique solution x = b — a;

(vij -(@a+b)=-a-bforalla,b R;



(vi) -(@a-b)=-a+bforalla,b R;
(vii) a0=0a=0foralla R;
(ix) a(-b)=(-a)b = —(ab) foralla,b R;
(xX) (-a)(-b)=abforalla,b R;
(xi) a(b-c)=ab-acforalla, b,c R.

1.4 Subrings and ldeals

Definition 1.4.1. A subset S of a ring R is called a subring of R if S is itself a
ring with respect to the laws of composition of R.

Proposition 1.4.2. A non-empty subset S of a ring R is a subring of R if and
onlyifa—-b S and ab S whenever a, b S.

Proof. If S is a subring then obviously the given condition is satisfied.
Conversly, suppose that the condition holds. Take any a S: a —a =0 S. For any
XS,0—-x=-xS.So0,ifa,bS,a-(-b)=a+b S. So S is closed with respect
to both addition and multiplication. Thus S is a subring since all the other
axioms are automatically satisfied. []

Examples 1.4.3. (i) 2Z, the subset of even integers, is a subring of Z.
(i) Z is a subring of the polynomial ring Z[x].

Definition 1.4.4. A subset | of aring R is called an ideal if
(i) lisasubring of R;
(ii) forallalandr R, ar landral. If Iis an ideal

of R we denote this fact by | R.

Examples 1.4.5. (i) Let R be a non-zero ring. Then R has at least two ideals,
namely R and {0}. We often write O for {0}.
(if) 2Z is an ideal of Z.
Proposition 1.4.6. Let | be a non-empty subset of a ring R. Then | R if and
onlyifforalla,blandrR,a-bl arl ral.
Proof. Exercise. O



1.5 Cosets and Homomorphisms

Definition 1.5.1. Let | be an ideal of aring R and x R. Then the set of I} is
elements X + I :={x +|i the coset of x in R with respect to I.

When dealing with cosets, it is important to realise that, in general, a given
coset can be represented in more than one way. The next lemma shows for the
coset representatives are related.

Lemma 1.5.2. Let R be a ring with an ideal land x, y R. Thenx+ 1=y + 1 X

-yl
Proof. Exercise. O

. R . R
We denote the set of all cosets of R with respect to | by = . We can give —
the structure of a ring as follows: define

X+ +y+1)=(X+y)+I
and
x+Dy+1):=xy+I

for x, y R. The key point here is that the sum and product on B| are well-
defined; that is, they are independent of the coset representatives chosen. Check
this and make sure that you understand why the fact that | is an ideal is crucial to
the proof.

Definition 1.5.3. B| is called the residue class ring (or quotient ring or factor
ring) of R with respect to .

The zero element of B| iSO+1=i+Iforanyi l.
Ifl S R wedenote by = the subset {s + I|s s} &

(i) every ideal of the rinq(Bhis of the form ﬁ| where KR and K I.
Conversely, KR, K177 ;

. : . R
(i) there is a one-to-one correspondence between the ideals of =) and
the ideals of R containing I.



Proof. (i) If K B| then define K:={x R|x + | K}. Then K R, K | and K| =K.

(if) The correspondence is given by K < K| , Where | K R, L

Definitions 1.5.5. A map of rings 6 : R — S is a (ring) homomorphism if 6(x +
y) = 6(x) + 6(y) and 6(xy) = 8(x)6(y) for all X, y R. 6 defined by 6(r) = 0 for all
r R is a homomorphism; it is called the zero homomorphism.

¢ defined by ¢@(r) — r for all r R is also a homomorphism; it is called the
identity homomaorphism. Let | R. TQen 0 : R — 7 defined by o(x) = x + | for
X R is a homomorphism of R onto — ; it is called the natural (or canonical)
homomorphism (of R onto = ).

Proposition 1.5.6. Let R, S be rings and 6 : R — S a homomorphism. Then

(i) 6(0r)=0s;
(i) 6(-r)=-06(r)forallr R;
(i) the kernel ker 6 := {x R|6(x) =0s }is an ideal of R;
(iv) the image 6(R) := {6(r)[r R}is a subring of S.
Proof. Exercise. O

Definitions 1.5.7. Let 6 : R — S be a ring homomorphism. Then @ is called an
isomorphism if 8 is a bijection. We say that R and S are isomorphic rings



( The second lecture))

1.6 The Isomorphism Theorems

Theorem 1.6.1. (The First Isomorphism Theorem.) Let6: R — S be a
homomorphism of rings. Then
R
6(R)

=ker 6

Proof. Let | := ker 6 and define o': B| — B(R) by o(x + 1) := 6(x) for x R.
The map o is well-defined since for X, y R,

X+1l=y+]| x—y |l=ker6 6x-y)=0 6(x) = 6(y).
o is easily seen to be the required isomorphism. O

Theorem 1.6.2. (The Second Isomorphism Theorem.) Let | be an ideal and L a
subring of R. Then

L =L+ i
g natural hor&omro]rpr{ism R I R . ReStriCt o to the
Proof. Let be the L+ R - T
ring L. We have o(L) =  —7,asubringof 1T . The kernel of o restricted to
L is L N 1. Now apply Theorem 1.6.1. L

Theorem 1.6.3. (The Third Isomorphism Theorem.) Let | , K R be such that |
K. Then

RI R
KNI K
Proof. K| B|_and so_KnB /I_is defined. Define a map_v_:_R|_—>_KR_by

y(x + 1) :=x+ Kforall x R. The map y is easily seen to be well-defined and a
homomorphism onto x— . Further,

y(x+)=Kx+K=K

x K
K
X+ | | sinceK 1
Therefore, ker y = ﬁ| . Now apply Theorem 1.6.1. L

1.7 Direct Sums

Definitions 1.7.1. Let {Ix}) A be a collection of ideals of a ring R. We define
their (internal) sum to be

Ih =x R x= K Xiy Xi lhi,k N ,

AN



the set of all finite sums of elements of the I’s. We say that the sum of the

IA\’s is direct if each element of A A lxis uniquely expressible as x1 + - - -+ Xk
x | denote the sum as I,orl I if

N

f}‘is finite. A A LA A}
Proposition 1.7.2. The sum | I I



Proof. Exercise. O

Definition 1.7.3. Let Ry, . . ., Rp be rings. We define their external direct
sum S to be the set of all n-tuples {(r1, . . ., rn)|ri Ri}. On S we define addition
and multiplication componentwise, thus making S into a ring. We write S = Ry
-+ Rp.

Theset(0,...,0,R;,0,...,0)isan ideal of S. Clearly S is the inter-nal direct
sum of the ideals (0, ..., 0, Rj,0,...,0)forj=1,...,n. But

j =

which the R; are ideals and S is their internal direct sum. Also, in Defini-tions

1.7.1 we can consider Iy - - - I to be the external direct sum of the rings Ij .
Hence, in practice, we do not need to distinguish between external and internal
direct sums.

1.8 Division Rings

Definition 1.8.1. Let R be a ring with 1. An element u U isa unit (or an
invertible element) if there is a v R such that uv = vu = 1. The element

. ) . -1
v is called the inverse of u and is denoted u .

Definitions 1.8.2. A ring D with at least two elements is called a division ring
(or a skew field) if D has an identity and every non-zero element of D has an
inverse in D. A division ring in which the multiplication is commutative is
called a field.

Example 1.8.3. (The Quaternions.) Let H be the set of all symbols ag + aji +
apj + azk where aj R. Two such symbols ag + a1i + apj + agk and bg + b1i +

boj + b3k are considered to be equal if and only if aj = bj for
i=0,1,2,3.

We make H into a ring as follows: addition is componentwise and two

elements of H are multiplied term-by-term using the relations i2 = j2 = k2 = -1,
ij = —fi =k, jk = —kj =1iand ki = —ik = J. Then H is a non-commutative ring with
zero0:=0+0i +0j + Ok and identity 1 := 1 + 0i + O] + Ok.

Let ag + aj1i + apj + azk be a non-zero element of H, so not all the a; are
zero. We have

. : : : 2 2 2 2
(ap+aji+ay+azk)(ag —aji—agj—azk)=apgtast+tar+asz =0.

10



a,. ap_a

. 2 2 2 2 a .
So, lettingn:=a“g+a"1+a 2 +a"3 theelement "2 - “nti —n — n°is the

inverse of ag + a1i + apj + azk.

Thus, H is a division ring. It is called the division ring of real quaternions.
Rational quaternions can be defined similarly where the coe cients are from

Q.

1.9 Matrix Rings

Definition 1.9.1. Let R be a ring with 1. Define Ejj Mn(R) to be the
matrix with 1 in the (i, j)th position and 0 elsewhere. The Ejj are called
matrix units.

If (ajj) Mn(R) is arbitrary then clearly (ajj ) = Lau =% R,

and this expression is unique. We also have
E ifj=k

EjEk = 0I otherwise.
Theorem 1.9.2. Let R be a ring with 1. Then
() 1 RMn(l) Mn(R);
(i) conversely, every ideal of Mp(R) is of the form M(I) for some IR.

Proof. (i) Trivial.

(i) Let XMp(R). We need an IR such that X = Mp(l). Let
akt

A = (ajj) = ij i i X. Consider fixed a, 8, 1a, 8 n. We have

agg E11 X, (1.9.1)

that is, the matrix with agg in the (1, 1) position and 0 elsewhere belongs to
X.

Now let | be the set of all elements of R that occur in the (1, 1) position of
some matrix in X. We show that | R and X = Mp(I).

Leta, b I. Then a, b occur in the (1, 1) positions of matrices A, B X. So a -
b=(A-B)11l. Letal, rR. Letabe the (1, 1) entry of

11



A X.Then A=(aj)= ij aij Eij withaz1 =a. Then E11A(rE11) X

since XMp(R). So a1 rE11X, so arl. Similarly, ral. Thus
I R.
cE
Now let C = (cjj) = i i X, Cjj R. By (1.9.1), cjj l.
So CMp(l). So XMp(l). _Finally, letD = _ (dij) =  i;dj Ej,
dij I _ By the definition of I, for each (i, j), d. E11 X. Therefore,
Ei1(djj E11)Eq; X.  So djj Ejj X foreachl <, j<n. Since X is an
ideal, we have D= j;dij Ejj  X. So Mn(l) X, 50 Mp(l) = X. =
Remark 1.9.3. The above does not hold for right ideals, e.g.
Z 7
r M2(2).
00

Definition 1.9.4. Aring R is said to be simple if 0 and R are the only ideals of
R.

Theorem 1.9.5. Let R be a ring with 1. If R is simple then so is the ring
Mn(R).

Proof. 0 and R are the only ideals of R and so Mp(0) and Mp(R) are the only
ideals of Mp(R). So Mp(R) is simple as well. [

Corollary 1.9.6. Let D be a division ring. Then the ring Muy(D) is a simple
ring.

Proof. The only ideals of D are 0 and D. 1

((The Third lecture ))

1.10 The Field of Fractions

Definition 1.10.1. A (commutative) ring R is called an integral domain if ab =
0Oa=0orb=0.

Example 1.10.2. Z; F [x], where F is a field.

Beware — non-commutative integral domains exist in advanced ring the-ory.

Definition 1.10.3. Let R be a (commutative) integral domain that is a K is
subring of a field K. Then of the field of fractions of R if every element b = 0,

. . -1 a, b R. We write K = Frac(R).
K is expressible as ab -,

12



We now show that every commutative integral domain has a field of frac-
tions that is in some sense unique.

Example 1.10.4. Q = Frac(Z). Note that Z R, C as well, but R, C = Frac(2).

Let R be a commutative integral domain, R := R\{0}. Let S ={(a, b)|aR, b
R }. Define a relation on S by

(a1, b]_) (ag, b2) ajbo =asbi.
Lemma 1.10.5. is an equivalence relation on S.

Proof. Let (aj, bj) S,i=1,2,3.

Reflexivity: (a1, b1) (az, bp) since a;b; =ajbs.

Symmetry:
(a11 bl) (a21 b2) a1b2 = azbl
aob; =aibs
(a2, b2) (a1, b1)
Transitivity:
(a1, by) (az, b2) (a3, bs) ajby = agby, agbz = azby

aibobs = asb1bs
aibobz = bjagby

(a1bz —agb1)bz =0
a1b3 = a3b1

since b =0and R is an integral domain
(a1, b1)  (as b3)

[

Theorem 1.10.6. Every (commutative) integral domain with 1 has a field of
fractions.

13



Proof. Let R be an integral domain. Consider the equivalence relation

as above. Denote the equivalence class of (a, b) by gb . Let K be the set of all
such equivalence classes. Define addition and multiplication in K by

a 4+C .zad+hbc
b d bd
and
ac ._ac
bd ~ bd

for gb , dg K. We first make sure that these definitions are well-defined. Let
& =% 4¢=¢".Then(a,b)(a,b)and (c,d) (c,d),soab=ba,cd =dc.
Hence
(ad + bc)b d =adbd + becb d
abdd+bbcd
(ad+bc)hd

So(ad +bc, bd) (ad+bc, bd). So + is well-defined. Similarly for multi-
plication.

Note that Qb = Qd forany b, d R, since 0d =b0=0.

It can be checked that K is a commutative ring under these operations. Qb :

for any b R, is the zero element of K; yX istthe additive inverse of Zy ; the
commutative, associative and distributive laws can be easily verified.

ll = Qb for any b R is clearly the multiplicative identity in K. The

multiplication is clearly commutative. Let Xy K,sox=0,so0xy=0.So Xy exists
and

xy x 1
yx =xy =1=1k
Thus every non-zero element of K has an inverse in K, so K is a field.

. There is also a clear injective homomorphic embedding of Rin Kby 6 : r —
-1 for r R. Now we truly have K as a field of fractions for

= O
Remark 1.10.7. There is no fundamental problem if R is without 1, since we can
still have 1k = Qb foranyb R. Nowembed R - Kby r — mb :

14



Lemma 1.10.8. Let R, R be commutative integral domains with fields of

fractions K, K respectively. Then R = R K=K.

Proof. Let6:R  Rbean isomorphismr.‘ We have K = ) { allb (a, b)
R R .Defineamap® : K Kby®@b ):=6(a)éb) .

® is well-defined: suppose that ab ~ = cd %, (a, b), (¢, d) R x R . Then ad
= bc, so 6(ad) = 6(bc), so 6(a)6(d) = 6(b)6(c), so G(a)e(b)_1 = Q(C)Q(d)_l, S0
®@b H=0(cd ).

® is a homomorphism: letab *, cd * K. Then

®@b " +cd )=0(@ad +bc)b d )

6(ad + bc)o(bd) "

(6(2)6(d) + B(b)B(C))B(b) 6(d)
= 6(a)e(b) " + 6(c)e(d) "

= ©@b 1)+ e(cd ).

Similarly, ©((ab )(cd 1)) = ©@b H)@(cd ).

O is surjective: every element of K s expressible as a~ bt (a b R R.
But 8 is an isomorphism, so a = 6(a) for some a R, and b = 6(b) for some
b R.Soab =6a@6(b) =06(@b ).

It is easy to check that O is injective. L]

Corollary 1.10.9. Let R be a commutative integral domain. Then its field of
fractions is essentially unique, in that any two such fields of fractions are
isomorphic.

Proof. Take R = R, 8 = idr in the above. L]

15



2 Modules

2.1 Modules
Definitions 2.1.1. Let R be a ring. A set M is called a right R-module if

(i) M is an Abelian additive group;

(ii) alaw of composition M x R — M : (m, r) — mr is defined that satisfies,
forallx,y Mandr, s R,
(X +y)r=xr+yr,
X(r +s) = xr + xs,
X(rs) = (xr)s.

A left R-module is defined analagously. Here the composition law goes R x M
— M and is denoted rm.
Examples 2.1.2. (1) R and {0} are both left and right R-modules.

(if) Let V be a vector space over a field F . Then V is left (alternatively, a
right) F -module. The module axioms are part of the vector space axioms.

(iii) Any Abelian group A can be considered as a left Z-module: for g A, k Z,
define

9*...+g  ktimes k>0
kg:= (-9)+ ...+ (-g) ktimes k<0
0a k=0

(iv) Let R be a ring. Then Mp(R) becomes a left R-module under the action
r(xij ) == (rxjj ). Clearly, we can also make a similar right R-module action.

For technical reasons, it is easier to work with right modules in the theory of
semi-simple Artinian rings.

Let R be a ring. The symbol Mg will denote M , a right R-module; similarly,
rM will denote M , a left R-module.

16



Proposition 2.1.3. Let M be a right R-module. Then
(i) Omr=0p forallr R;

(i) mOR =0y forallm M;

@iy (=m)r=m(-r)=—-(mr)forallm M,r R.

Proof. (i), (ii). Exercises.
(iii) By (ii),
mr + m(-r) = m(r + (-r)) = mOr =0y, .

So m(-r) = —(mr) by the uniqueness of —(mr) in the Abelian group M.
Similarly (-=m)r = =(mr). L

Definition 2.1.4. Let K MR. Then K is a right R-submodule (or just
submodule) if K is also a right R-module under the law of composition for
M.

Proposition 2.1.5. Let = K MR. Then K is a submodule of M if and only if for

allx, y K, rR, x —y Kand xr K.
Proof. Exercise. O

Definitions 2.1.6. Submodules of the module Rgr are called right ideals.
Submodules of RR are called left ideals.

2.2 Factor Modules and Homomorphisms

Let K be a submodule of Mg. Consider the factor group M . MK Elements of

are cosets of the form m + K for m M . We can make ~— g R- intoaright
module by defining, formM , r R,

[m+K]r:=[mr + K].

Check that this action is well-defined and that the module axioms are satis-fied.

Definition 2.2.1. MK with this action is called the factor (or quotient) module
of M by K.

17



Example 2.2.2. Letn Z,n=2. Then nzﬂs a natural Z-module.

Definitions 2.2.3. Let M, M be right R-modules. Amap 6 : M — M is an R-
homomorphism if

(i) B(x+y)=06(x)+0O(y) forall x,y M;
(i) B(xr)=6(x)rforallx M,r R.

(Similarly for left R-modules.)  If Kis a submodule of Mg then the map
o:M— MK defined by o(m) = [m + K] is an R-homomorphism of M onto
~k . Itis called the canonical (or natural) R-homomorphism.

Proposition 2.2.4. Let 6 : MR — MR be an R-homomorphism. Then
(i) 6(0m)=0m ;
(i) the kernel ker 6:= {x M |6(x) =0y }is a submodule of M ;
(ii) the image 6(M ) := {6(m)im M }is a submodule of M ;

(iv) O is injective if and only if ker 6 = {Opm }.
Definition 2.2.5. Let 8 : MR — MR be an R-homomorphism. If 8 is

(( Fourth lecture))

2.3 The Isomorphism Theorems
These are similar to those for rings and have similar proofs. Theorem

2.3.1. Let 8 : MR — MR be an R-homomorphism. Then

M
(M) .
=ker
Theorem 2.3.2. If K, L are submodules of MR then
L+kK= L
K LNK
Theorem y 2.3.3. If K, L are submodules of M - K L then % is a
submodule ofx and
MK =M
LK L

18



When K is a submodule of Mg and L K a submodule of M , then KL is a

submodule of MK . Conversely, every submodule of MK is KL for L a submodule
of M containing K. Thus



M
submodules of K« {submodules of M containing K} .

2.4 Direct Sums of Modules
Definition 2.4.1. Let My, . . ., My be right R-modules. The set of all n-tuples

{(m1, . .., mp)|m; M;} becomes a right R-module if we define
(ml,...,mn)+(ml,...,m)::(m1 +rq,...,mn+m ),

(mq, ..., mp)r:=(mar, ..., mpr),

formj, min M;, r R.This is the external direct sum of the M;, which we
MorM:--- M.

denote =1 1 n

Definition 2.4.2. Let {M,}) A be a collection of subsets of M. We define their

(internal) sum by

Mg ={mp+---+ma|my My for finite subsets {Aq, . .., Ak} A}.

Thus A A My s the set of all finite sums of elements from the My. Itis
easy to see that M M
Definition 2.4.3. A A My is direct if each m A AMj has aunique

We can show that o A My is direct if and only if

My N My  ={0}
A N}

forall p  A. If the sum is direct we use the same notation as above.



As before with rings, there really is no di erence between (finite) internal
and external direct sums of modules.
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Definition 2.4.4. Let R be a ring with 1. MR is unital if m1 =m forallm M .
Similarly for rM .

Exercise 2.4.5. Let R be a ring with 1, M a right R-module. Show that
M has submodules M1 and M> such that M = M1 M» with M1 unital and mor =
0 forall mo Mo, r R.

Since modules like M2 give us no information about R, whenever R has 1
we assume that all R-modules are unital.
2.5 Products of Subsets
Let K, S be non-empty subsets of Mr and R respectively. Define their prod-uct
KS to be
KS = kisi ki K,si S,n N
i=1

l.e., KS consists of all finite sums of elements of type ks If = fork K,s S.
KM, SR, then KS is a submodule of M — to make this We need finiteness
work.

This definition applies, in particular, with M = R. Thus, if =S R,

n
S2:= siti si,ti S,n N

=1

Extending this inductively, s" consisnts of all finite sums of elements of type
S$1S2...5Spn, SiS. Notethat SRS [ R.
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3 Zorn’s Lemma

3.1 Definitions and Zorn’s Lemma

Definition 3.1.1. A non-empty set S is said to be partially ordered if there is a
binary relation < on S, defined for certain pairs of elements, such that for all a,
b,cS,

(i) a<a;

(i) as<band b <scac<c;

(iii) a<band a<ba=h.

Definition 3.1.2. Let S be a partially ordered set, a non-empty subset T is said

to be totally ordered if foralla, bcT,a<borb<a.

Definitions 3.1.3. Let S be a partially ordered set. An element x S is called
maximal if x <y and y S x =y. Similarly for minimal.

Definition 3.1.4. Let T be a totally ordered subset of a partially ordered set S.
We say T has an upper bound (in S) if c Ssuchthat x <c forall x T .

Axiom 3.1.5. (Zorn’s Lemma.) If a partially ordered set S has the property that
every totally ordered subset of S has an upper bound then S contains a maximal
element.

Remark 3.1.6. There may in fact be several maximal elements. Zorn’s Lemma
guarantees the existence of at least one such element.

3.2  The Well-Ordering Principle

Definition 3.2.1. A non-empty set S is said to be well-ordered if it is totally
ordered and every non-empty subset of S has a minimal element.

Axiom 3.2.2. (The Well-Ordering Principle.) Any non-empty set can be well-
ordered.
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3.3  The Axiom of Choice

Axiom 3.3.1. (The Axiom of Choice.) Given a class of non-empty sets there
exists a “choice function”, i.e. a function that assigns to each of the sets one of
its elements.

It can shown that

Axiom of Choice  Zorn’s Lemma  Well-Ordering Principle.

3.4  Applications

Definitions 3.4.1. let M be a right ideal of a ring R. M issaid to be a

maximal right ideal if M = R and M M ; R M maximal = R, Similarly for
left ideal and maximal two-sided ideal.

Theorem 3.4.2. Let R be a ring with 1. Let | = R be a (right) ideal of R.
Then R contains a maximal (right) ideal M such thatl M.

Proof. We prove this for | y R. Consider S :={X  R|X I, X =R}. S =since |

S. Partially order S by inclusion. Let T := {Xg}q A be a totally ordered subset of
S.

- - N A N\

Consider X := o« A Xe X, X Xthenx a2 az for some
ai, ap  A.Since T is totally ordered, we can assume that Xg1Xq2 . SO

X1, X2 Xa2,50X; = X2 Xg  X.Clearly,alsox X,andr RXr

X. Thus X  R. Also X =R since

X=R1 X
1 Xq forsome a

Xq=R, - -
S

which is a contradiction. Trivially, X I so X . Also clearly, X4 X for all a A.

S T

Thus, X is an upper bound in for . So Zorn’s Lemma applies and hence S
contains a maximal element M . Clearly M is a maximal right ideal of R and
contains |I.

The proof is similar for left ideals and two-sided ideals. O
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Remark 3.4.3. This result is false if R is without 1.
Corollary 3.4.4. A ring with 1 contains a maximal (right) ideal.

Proof. Take | = {0} in the above. H

Note that pZ is a maximal ideal of Z for each prime p.

Theorem 3.4.5. Every vector space has a basis.

Proof. Exercise. Hint: Apply Zorn’s Lemma to obtain a maximal set of
linearly independent vectors. Note that a set of vectors is defined to be linearly
independent if every finite subset is linearly independent. [

Exercises 3.4.6. Let R be a commutative ring with 1. Show that

(i) if Ris a finite integral domain then R is a field;

(i) ifM R and M =R then M is maximal if and only if VR is a field.
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(( Fifth lecture))

4 Completely Reducible Modules

4.1 Irreducible Modules
Definition 4.1.1. A right R-module M is irreducible if

(i) MR=0;
(i) M has no submodules other than 0 and M .

If R has 1 and M is unital then (i) can be replaced by M = 0.
Examples 4.1.2. (i) Let p be a prime; then pzjis an irreducible Z-module.
(it) Everyring R with 1 has an irreducible right R-module. By Theorem 3.4.2,
R has a maximal right ideal M ; MR is an irreducible right R-module.

(iii) Let V be a vector space over a field F . Then any 1-dimensional sub-space
of V is an irreducible F -module.

The vector space V has the following interesting property: V is a sum of 1-
dimensional irreducible submodules/subspaces, i.e. has a basis; this sum is

: . : : : Z
direct. Not all modules over arbitrary rings have this propert%. Consider 4 zas a

27 . . . ;
Z=module. "4 z is the only (irreducible) submodule of 4 7z —So 4 7z is not
expressed as a sum of irreducible submodules.

4.2 Completely Reducible Modules

Definition 4.2.1. MR is said to be completely reducible if M is expressible as a
sum of irreducible submodules.

Examples 4.2.2. (i) Let F be a field. Then every F -module is completely
reducible, i.e. every vector space has a basis.

o 2. . Z 27 37
(i) & zis completely reducible asa Z-module: 672="6 z+ 6 z.

Definition 4.2.3. Let {M}» A be a family of submodules of Mr. The
family is independent if the sum 4 A M, isdirect. Thus {Ma}x A isinde-



pendent if and only if M, N ) A MA =0forallp A.
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Lemma 4.2.4. Suppose {Mj}x A is a family of irreducible submodules of
Mr andletM:= ) A M) Let K be a submodule of M . Then there is an

independent subfamily {Mj},» A such that M =K nAM .
Proof. We apply Zorn’s Lemma to the independent families of the form {K}

Partially order the set S of all such families by inclusion. Let T be a to-tally
ordered subset of S, C the union of all the families in T . Each member of T has
the form {K} {Mp}u x A, so we have the same form for C.

We need to show that C S, i.e. C is an independent family. Let | be any
submodule in C and suppose X is the sum of all other submodules in C. Let x |

NX. ThenX =X1 + - - - +Xp, Xjlj=1, ljasubmoduleinCforj=1,...,n.

Now I, I1, ..., I, areall in C so each comes from some family in T . But
T istotally ordered,so |, I1, ..., In lie in some one family in T . But this
family is independent,so X =x3 = - - =X =0.So I N X =0.

So C is independent. Also C has the form {K} {My}, x A, so C S. Clearly C
is an upper bound for T . So, by Zorn’s Lemma, S contains a maximal element,

say {K} {Mybu A A ()



1vi

WeclaimM =K ya ' Suppose @ A such that Mg N
A

{ }
K M Then K Mﬂ M would be an inde-
family, contradicting ( )- ThusM A M =M
pendent a A u ofor
all a A, since Mg is irreducible and Mg K My is a submod-
uleof Mg. SoMg K u A Mu foreacha A.AsM= ), aAMy
M= Ku AMy .
]

Lemma 4.2.5. (Dedekind Modular Law.) Let A, B, C be submodules of MR

suchthatBA. ThenANB+C)=B+ANC.
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Proof. Elementary. 1

Theorem 4.2.6. Let M be a non-zero right R-module. The following are
equivalent:

(i) M is completely reducible;
(i) M is a direct sum of irreducible submodules;

(i) mR =0, mM m =0 and every submodule of M is a direct summand
of M.

Proof. (i)  (ii). Take K =0 in Lemma 4.2.4 above.

(if)  (iii). Suppose that mR = 0 for some m M.LetM= A AMy,
M, irreducible. Thenm=mq1+ - - -+ mg forsomem; My .

mr=0,r R mur+---+mgr=0
mjr = 0 for all i,

since the sum of the M, is direct.

Define Kj := {x My [XR =0} for j =1, . . ., k. Then K] is a submod-ule of
M, . So Kj =0 or My since My; is irreducible. But Kj = My; since
My R = 0 by definition of irreducible submodule. So Kj=0forj=1, ...,k

Thusmj=0forj=1,...,k som=0. The second part follows from Lemma
4.2.4.

(iit) (). Our first aim is to show that M has an irreducible submodule.

Note that by the Dedekind Modular Law the hypothesis on M is inher-ited
by every submodule of M .

Let0 =y M. Let S be the set of all submodules K of M such thaty K. S =
since {0} S. Partially order S by inclusion; let T be a totally ordered subset of S.
Let C be the union of all the submodules in T . Then'y C and C is a submodule
of M. So C S and C is an upper bound for T . By Zorn’s Lemma, S has a
maximal element B. y B so B = M . Hence, by hypothesis, there is a B = 0 such
that B B =M . We claim

26



that B is irreducible.

B R = 0 by hypothesis. Suppose B contains a proper submodule B1 = 0.
Then there is a submodule B2 = 0 such that B = B; B. Now y B1 By by the

maximality of B S. So y (B B;) N (B By) = B, a contradic-tion. So B is
irreducible, and thus M has an irreducible. Let K be the sum of all these.

If K = M there is a non-zero submodule L of M such that M = K L. But the
above applied to L gives an irreducible in L, a contradiction since K contains all
the irreducible submodules of M and K N L = 0. Thus K = M and M is
completely reducible. [

Remark 4.2.7. The first part of condition (iii) holds automatically when R has 1
and M is unital.
4.3 Examples of Completely Reducible Modules

Example 4.3.1. Let D be a division ring and R := Mp(D). Then both rR and RR
are completely reducible.

Proof. Let



lj is the set of all matrices in Mp(D) where all rows except the jth are zero.
Thenl; rRandlj =EjR, \év7here Ejj is the (j, j) matrix unit,



We claim that each |; is an irreducible R-module.

Suppose that 0 X Ij, Xy R. Then X contains a non-zero matrix A = (agg ). A
must have a non-zero entry, and since A Ij , ax = 0 for some k. Let B be he
matrix with a_jk1 in the (k, j)th place and O elsewhere. Then AB = Ejj . So Ejj X,
since A X R. So Ejj R X'since Xy R. Thus I; = X. Since R has 1, I; R = 0, each
lj is an irreducible right R-module.

Itis clear that R = 13 - - - I, so Rr is completely reducible. Similarly for
rRR.

Example 4.3.2. Let R := R1 - - - Ry, be a direct sum of rings, where R;j := Mp;
(D), Dj division rings, nj N. Again rR and Rr are completely reducible.

Proof. Since each Rj R, each R;j can be viewed as an Rj-module or an R-

module. Further, the Rj-submodules and R-submodules coincide. Note that RiR;
=0fori=j.

By the previous example, each R; is a sum of irreducible Rj-submodules.
So each Rjis a sum of irreducible R-submodules. So R is a sum of irreducible
R-submodules. Hence rR and Rr are completely reducible.

The significance of this example is that we now aim to show that if R is a
ring with 1 and RR is completely reducible then it is necessarily a ring of the
type given in the second example above. As a consequence we shall have Rr
completely reducible RR completely reducible.
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(( Sixth lecture))

5 Chain Conditions

5.1 Cyclic and Finitely Generated Modules

Definitions 5.1.1. Let =T  MRg. By the submodule of M generated by

T we mean the intersection of all submodules of M that contain T . We de-note
this by (T ). Thus (T ) is the “smallest” submodule of M that contains T .

When T consists of a single element a M we have
(@) ={ar + Aa|r R, A Z}
since the RHS
(i) is asubmodule of M ;
(if) contains a;
(iii) lies inside any submodule of M containing a. If

R has 1 and M is unital then (a) = aR.

If M = (a) for some a M then M is said to be a cyclic module generated by

a. A module M is said to be finitely generated if M = (a) + - - - + (ax ) for
some finite collection{ay, . . ., ak } M. The a; are generators of M
If R has 1 and MR is unital then MR finitely generated M=aiR +

--+akxRforsomea; M.

A cyclic submodule of Rg (respectively rR) is called a principal right
(respectively left) ideal of R. Thus aZ Z is principal.

5.2 Chain Conditions

Definition 5.2.1. A set A is called an algebra over a field F if
(i) Ais avector space over F ;

(i) A is aring with the same addition as in (i);
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(i) the ring and vector space products satisfy
A(ab) = A(ab) = a(Ab)
foralla,b AandA F.

Example 5.2.2. Mp(F ) is an n2-dimensional algebra over the field F .

Substructures, homomorphisms etc. for algebras can be defined in the usual
ways. Thus

Definition 5.2.3. | A'is an (algebra) right ideal if
@M I r Aasrings;
(if) 11is a subspace of the vector space A.
If A has identity 1 then the vector space structure is automatically preserved.

Example 5.2.4. Let |1y A, KA. Then for A F, x I, Ax = A(x1) = x(A1) I, since | is
a right ideal of the ring A and A1 A. Similarly, for

A F,yK, Ay =A(Qly) = (Al)y K. In general, if A is an algebra over a field F
and A F we cannot immediately say that A A.

However, if A has 1 we can overcome this problem: define

F ={A1]A F}
Clearly F is a subalgebra of A and a field isomorphic to F . If we identify
F  F we canassume F A.

Example 5.2.5. For Mp(F ),

F Ao F .
0...A

Now let A be an n-dimensional algebra with 1. Let 11 I> . . . be an ascending
chain of right ideals in A. Since each lj is a subspace of A we have
dim Ij =dim |j+1 Ij = |j+1.

Hence, the chain can have at most n + 1 terms. Similarly for descending chains.
Many properties of algebras can be deduced from these facts alone. Moreover,
there are rings (for example, Z) that are not algebras but that still satisfy
something like the above property.
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Definitions 5.2.6. (i) A module MR has the ascending chain condition on
submodules if every ascending chain of submodules M1y  M»

... has equal terms after a finite number of steps. Similarly for the
descending chain condition.

(i) MR has the maximum condition if every non-empty set S of submodules
of M contains a maximal element with respect to inclusion. Similarly for
the minimum condition.

Remark 5.2.7. The ascending chain condition or descending chain condi-tion
alone does not imply that all chains stop after a fixed n terms. For example, Z
has the ascending chain condition (it’s a principal ideal domain) but ascending
chains of arbitrary length can be constructed:

Kz Kl 2z 2z

However, if we have both the ascending chain condition and descending chain
condition then such a “global” n does exist. This follows from the theory of
composition series.

Theorem 5.2.8. Let MR be a right R-module. The following are equivalent
(i) M has the maximum condition on submodules;
(i) M has the ascending chain condition on submodules;

(iif) every submodule of M is finitely generated.

Proof. (i) (iii). Suppose that K is a submodule of M that is not finitely
generated. Choose x1 K and let K; := (X1). Then K = K1. So x2 K with xo Kj.
Let Ko :=(X1) + (X2). Then K2 = K. So x3 K such that x3 Ko. K3 := (X1) + (x2) +
(x3). Define Kj inductively like this for positive integers i. Let S := {Kjli N}; S
has no maximal element. So, by the contrapositive, if M has the maximum
condition on submodules then every submodule is finitely generated.

(iii)  (ii). Let K Ko ... beanascending chain of submodules of M .
Let K := j=1 Kj; then K is a submodule of M and K is finitely generated,
generated by X1, . . ., Xn K, say. Then t N such that x1, . . ., Xn Kt. So K = (X1)

+ -+« + (Xn) Kt. Hence K¢ = K¢+ for all j 2 0.
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(i) (i). Let S be a non-empty collection of submodules of M, Choose K1 S.
If Kq is not maximal in S, Ko S such that K1 Ko. If Ko is not maximal K3 S
such that K> K3. So, by the Axiom of Choice, we obtain an ascending chain K1
Ko K3 . .. of submodules of M . [

Theorem 5.2.9. Let MR be a right R-module. The following are equivalent
(i) M has the minimum condition on submodules;
(i) M has the descending chain condition on submodules;

Proof. Similar to the above. |

Examples 5.2.10. (i) A finite ring has both the ascending chain condi-tion and
descending chain condition on right and left ideals.

(if) A finite-dimensional algebra with 1 has both the ascending chain con-
dition and descending chain condition on right and left ideals.

(iii) A commutative principal ideal domain has the ascending chain condi-

tion on ideals. Z, F [x] and J are commutative principal ideal domains. So,
in particular, these have the ascending chain condition on ideals; they do
not have the descending chain condition on ideals.

Theorem 5.2.11. Let K be a submodule of a module Mr. Then M has the
ascending chain condition (respectively the descending chain condition)

on submodules if and only if “k has the ascending chain condition
(respectively the descending chain condition) on submodules.

Proof. (). Easy.

()- Let M1 M2 . . . be an ascending chain of submodules of M . Consider the
chains

Mi1NK Mz>NK
M1 +K Mo +K

The first chain consists of submodules of K, so j N such that Mj N K= N K forall i 0. The second chain consists of submodules of M
1
j+H

containing K. These are in one-to-one correspondence with submodules of
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MK . S0 k N such that Mg +K = Mg+ +K for all i = 0. Let n = max{j, k}. Now

Mn+i = Mn+i N (Mn+i N K)

= Mn+i N (Mp + K)
= Mp + (Mp+i N K) by the Dedekind Modular Law

= Mp + (Mp N K)
:Mn

So M has the ascending chain condition on submodules. Similarly for the
descending chain condition. [J

Corollary 5.2.12. Let M4, . . ., M be submodules of MR. If each M; has the
ascending chain condition (respectively, the descending chain condition)

on submodules then so does K := M1 + - - - + M.
Proof. Let K1 :=Mq + Mz.r]'hen by the Second Isomorphism Theorem,

Ivi T vl [\
1= 1 2 = 2_

M1 M1 M1 N M
My

Now —iinw; has the ascending chain condition on submodules, since it is a
factorof M, . S0 x_  has the ascending chain condition on submodules. Thus
M1

K
M1 and ﬁ have the ascending chain condition on submodules. So, by The-

orem 5.2.11, K1 has the ascending chain condition on submodules. Extend to K
by induction.

Analagously for the descending chain condition. 1

Corollary 5.2.13. Let R have 1 and the ascending chain condition (respec-

tively, the descending chain condition) on ideals. Let MR be a (unital)
finitely generated R-module. Then M has the ascending chain condition
(respectively, the descending chain condition) on submodules.

Proof. Since MR is unital and finitely generated, there exist mq, . . . , mg

M suchthat M =m1R + - - - + mg R. By Corollary 5.2.12, it is enough to show
that each mjR has the ascending chain condition on submodules. Let 6; : Rr —
mMiR : r — mjr. Then 6; is an R-homomorphism onto m;R. So each mjR is a
factor module of RR. Since Rr has the ascending chain con-dition on
submodules it follows that mjR has the ascending chain condition
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on submodules.

Similarly for the descending chain condition. O

Remark 5.2.14. For the ascending chain condition the above result is still true
even if R does not have 1; for the descending chain condition the result is false.

Corollary 5.2.15. If R has the ascending chain condition (respectively, the
descending chain condition) on right ideals then so does the ring Mp(R).

nooa L ouwy
Proof. Consider My(R) as a right R-module in the natural way. Let T := {(r ) My(R)lrc = 0k = i, = n each Ty is an R-submodule of My iis isomorphic to Re. So each T has the as- . =
cending chain condition on R-submodules. But Mn(R) = =1

Corollary 5.2.12, My(R) has the ascending chain condition on R-submodules.
Clearly, however, a right ideal of M(R) is also an R-submodule of Mp(R).
So Mp(R) has the ascending chain condition on right ideals.

Similarly for the descending chain condition. O

Example 5.2.16. Let D be a division ring. Then Mp(D) has both the ascending
chain condition and descending chain condition on right ideals, since 0 and D
are the only (right) ideals of D.

Exercise 5.2.17. Let S be a subring of Mp(Z) such that S contains the identity of
Mn(Z). Show that S is a ring with the ascending chain condition on right ideals.

Definitions 5.2.18. A module 1with the ascending chain condition on sub-
modules is called a Noetherian™ module. A m%dule with the descending chain
condition on submodules is called an Artinian module. A ring with the as-
cending chain condition on right ideals is called a right Noetherian ring. A ring

with the descending chain condition on right ideals is called a right Artinian
ring. Similarly for left Noetherian ring and left Artinian ring.

Theorem 5.2.19. (The Hilbert Basis Theorem.) If R is a right Noetherian ring
then so is the polynomial ring R[x].

1Amalie (Emmy) Noether (1883-1935)
2Emil Artin (1898-1962)
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(( Seventh lecture ))

6 Semi-Simple Artinian Rings

6.1 Nil and Nilpotent Subsets
Definitions 6.1.1. Let R be a ring.

(i) x R is nilpotent if x" = 0 for some n = 1.

(if) Asubset S R is a nil subset if every element of S is nilpotent. Thus S
nil, x S n(x) N such that xn(X) =0.

(iii) S'is a nilpotent subset if s" = 0 for some n = 1. Recall that

Sn= S$152...57 Si S
finite
1
Examples 6.1.2. () InM2(2), Q0 0 isa nilpotent element.
(i) In =z 22 is anilpotent ideal.
47 47
Lemma 6.1.3. () If I, K are nilpotent right ideals than so are | + K and
RI.

(ii) Every nilpotent right ideal is contained in a nilpotent ideal.

Proof. (i) There are positive integers r, s such that I = K® = 0. Con-sider (+
K™ = 1+ K)(1 + K) . .. (I + K). This, when expanded, has 2" terms,

each of which has the form T = A1A2 . . . Ar+s-1, Where each Aj =1 or K. So in
a typical term either I occurs = r times or K occurs = s times.

Suppose | occurs = r times. Then T K'Ik where i =2 0, k = r, with the
convention Ko =1, We have used the fact that | K I. So T = 0. So every term in
the expansion of (I + K)HS_1 vanishes. So | + K is nilpotent.

(R) =(RDHRI)...R)=R(R)...(R)I RI" =0.

(ii) Let I  R. If I is nilpotent then so is | + Rl by (i). Clearly I + RI R and | |
+RI. [

35



Definition 6.1.4. The sum of all nilpotent ideals of R is calles the nilpotent

radical of R, usually denoted N (R).
It follows from Lemma 6.1.3 that

N (R) = nilpotent right ideals = nilpotent left ideals.

Clearly N (R) is a nil ideal. It is not, in general, nilpotent.

Exercise 6.1.5. Let R be a commutative ring. Show that N (R) = the set of all
nilpotent elements of R. (Hint: use the Binomial Theorem.) Give an example to
show that this is false in general for non-commutative rings.

Example 6.1.6. (A Zassenhaus Algebra.) Let F be a field, | the interval (0, 1), R

the vector space over F with basis {xj|i 1}. Define multiplication on R by
extending the following product on basis g\lements:

g ifi+j<l,
xxi = 0 ifi+j=1.

Thus every element of R can be written uniquely in the form
F , with a =0 for all but a finite number of indices i. Check tt

nil but not nilpotent and that N (R) = R.

6.2 ldempotent Elements

Definition 6.2.1. An element e R is idempotent if e = e2.

Examples 6.2.2. (i) In any ring, 0 is an idempotent element. If 1 exists, it is
idempotent.

10 00

(i) In M2(2), 0 0 and Q 1 areidempotents.
Lemma 6.2.3. Let e be an idempotent in a ring R. Then R = eR K, where K

={x-ex|x R} R.
Proof. Clearly Ky R.Now x R x=ex + (x —ex) eR + K. If zeR N K then

Z=ea=eb-bforsomea, b R. Then

e?a=e’b-eb=eb-eb=0

and X
ea=ea=0.
S0z=0.S0R=¢eR K O
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Corollary 6.2.4. (Peirce Decomposition.) Let R be a ring with 1 and e R an
idempotent. ThenR =eR (1 - e)R

Proof. K = (1 — e)R in the above if R has 1. L]
Remark 6.2.5. e is idempotent 1 - e is idempotent.

Exercise 6.2.6. Take an idempotent in M2(Z) and write down a Peirce
decomposition.

Proposition 6.2.7. Let R be a ring with 1. Suppose R= g
sum of right ideals. Then we can write 1= & +...+€ withe [ having
the following properties:
() each e; is an idempotent;
(i) ejgj =0foralli=j;
(i) lj =ejRforj=1,...,n;
(v) R=Re; --- Rep, adirect sum of left ideals.

Proof. (i) and (ii). For each j we have
2
ej =lej =e1gjt - - -+ €-16j+ € [t €+16t - - T €nEj.
So
- e°j=exe; DN 1s=0
I Il T A I o

: 2 . .
by directness. Soej =e  and esej =0. Since the sum of the |j is
i s=j

direct, we have eigj =0 foralli=|.

(i), (iv). Exercises. L1 Example 6.2.8. Take R = Mp(Z), €j = Ejj matrix unit.
Thenl=e1 +
--+epandR=e1R --- epfR=Re; --- Rep.
Definition 6.2.9. Let R be aring. The centre of R is
C(R) :={x Rlr R, xr=rx}.

C(R) is a subring of R but not, in general, an ideal.
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Exercise 6.2.10. Let F be a field. Find C(M (F )). Show that C(M (F)) =
n n
F asrings.

Proposition 6.2.11. Let R be a ring with 1, withR=A; - - - A a direct sum
of ideals. Let1=e1 + - - - + ek, €j Aj. Then
() g CR)forj=1,...,k;
(i) ezj =¢j forall j; eiej =0fori=j;
(i) Aj =ejR=Rej;
(iv) ej is the identity of the ring A; .

Proof. (ii) follows from Proposition 6.2.7.
(iii) Aj = ej R =Rej asin Proposition 6.2.7 since A; ; Rand AR.

. 2

(iv) Let X Aj .2Then X = ejty =tyejforsomety, to. Thenegjx =ejty =ejty
= x and xej = toe"j = trej = X. Thus xej = €j x = x for all x Aj. Since gj Aj, it
follows that e; is the identity of the ring A; .

(i) Letx R. Thenejx = ezjx = ej (ej x) = (e x)ej since gj x Aj and e; is the
identity of Aj . Also xej = xe j(xej )ej = €j (xe;j ) similarly. By
associativity, ej x = xe;j for all x R, 50 ] C(R). L]

Definition 6.2.12. Such an €; C(R) is called a central idempotent.

6.3  Annihilators and Minimal Right Ideals

Definitions 6.3.1. Let = S MRr. We define the right annihilator of S to be r(S)

:={r R|Sr = 0}. Clearly, r(S)  R. When S is a submodule of M, r(S) R. (S), the
left annihilator of S, is defined analagously when
M is a left R-module.

In most applications, S R itself, and so we can consider both r(S) and (S).

Definition 6.3.2. A non-zero right ideal M of aring R is a minimal right ideal if
whenever M M , M R, it follows that M = 0.
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If R has 1 then the minimal right ideals of R are precisely the irreducible
submodules of RR.

Lemma 6.3.3. Let M be a miniEnaI right ideal of a ring R. Then either M o=
OorM=eRfromsomee=¢e M.

Proof. Suppose M 2 = 0. Then a M such that aM = 0. aM R and aM M

sincceaM.SoaM=M.Thuse Msuchthata=ae.a=0e=0.Also a=ae =
2 2
ae .Soa(e-¢e)=0.

Now consider M Nr(a). M Nr(a) f Rand M Nria) M. SoM Nr(a) =0 or M .
Suppose for a contradiction that M Nr(a) =M . So M r(a), so aM = 0. Thus M
Nr(a) =0.

But e —e2 MNr(@=0,soe :ez. NowO:e2 eR. So eR = 0. But

eR y RandeR Msincee M. Thus eR =M as required. =
Q Q 0Q
Exgmpole 6.3.4. Take R := 0 Q ConsiderM; == Q0 0 ,Mp :=

0 0. E%th M1, M2 are minimal right ideals. Now M12 =0,M> =eR

wheree := () 1

Definition 6.3.5. A ring with no non-zero nilpotent ideal and the descending
chain condition on right ideals is called a semi-simple Artinian ring.

Note that by Lemma 6.1.3(ii) and symmetry such a ring has no non-zero
nilpotent right or left ideals.

Remarks 6.3.6. (i) The left-right symmetry of semi-simple Artinian rings will be
established later.

(i) We will justify the term “Artinian” by showing the existence of an
identity.

(ili) We shall not define “semi-simple” on its own, but in this context it can be
thought of as meaning a direct sum of simple rings.

Proposition 6.3.7. L(Zet R be a semi-simple Artinian ringand |  R. Then | =
eR forsomee=¢e |
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Proof. By the minimum condition every non-zero right ideal of R con-tains a
minimal right ideal. Hence, by Lemma 6.3.3, since R contains non non-zero
nilpotent right ideal, every non-zero right ideal of R contains a non-zero
idempotent.

Now if | = 0 then the result is trivial with e = 0, so assume that | = 0. Let E
be the set of all non-zero idempotents in I. By the above, E = . We claim that
there is an idempotent e E such that I Nr(e) = 0.

Suppose not. Let | N r(z) be minimal in the set S := {I N r(x)|x E}. By
assumption, I Nr(z) = 0. So I N r(z) contains a non-zero idempotent z . So (z)
=z,zz=0.Considerz1=z+z -2z z. 21 |since z, z . We have

21z2=(@z+z-z2z=2+zz-zz=12
So, in particular, z; =0.

2
212 =(z+z-z2z =(z) =2z,
o)
2
21 =21(z=z-z2)=z+z-zz=2;.
Thus z1  E. We shall now show that

r(z)) N1 () NI (6.3.1)
tr(z1) NIzt =0zz1t =0zt =0, since zzy =zt r(z) N 1.

Also, z r(z1) N1 but z r(z) N1 since zyz = z = 0. This establishes (6.3.1).

But (6.3.1) contradicts the minimality of r(z) N I. This proves our claim. So
thereisan e E suchthatl Nr(e) = 0.

Now define K:={x —ex|x I}. ThenK R, K l,andeK=0.SoK I Nr(e) =0.

Thus x = ex for all x I. Hence | eR. But clearly eR I sincee land |  R. So | =
eR as required. [

Corollary 6.23.8. Let R be a semi-simple Artinian ring and A R. Then there
isane=e Asuchthat A=eR =Re.
Proof. By Proposition 6.3.7, A = eR for some e = e2 A, since Ay R. LetK
= {x —xe|x A}. Then K R, since A R. Also, Ke =0, so
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KeR =0 and K® = 0 since K A = eR. So K =0 as R has no non-zero nilpotent
left ideal. Thus x = xe for all x A. So A Re. But Re A since e A and A R. Thus
A=eR=Re.

Corollary 6.3.9. A semi-simple Artinian ring has identity.
Proof. Take A =R in Corollary 6.3.8. 1
Theorem 6.3.10. The following are equivalent for any ring R:
() R is semi-simple Artinian ring;
(il R has 1and RR is completely reducible.

Proof. (i) (ii). By Corollary 6.3.9 R has 1. Let | ; R. By Proposition 6.3.7 | =

eR for some e = e |. By Peirce Decomposition, Corollary 6.2.4,
| is a direct summand of R. So every submodule of Rp is a direct summand of Rg.
So by Theorem 4.2.6, RR is completely red/l\JcibIe.

Thenl= | +---+ for i i
(i) (i). WehaveR= A Al Iy anirreducible submodule of Rg.
X X some X | . Now for any X R,
X=IXx=x1X+---+XpX lar -+ Lin,
SOR =11 «+ ln and [A| < . So by Corollary 5.2.12, RR has the

descending chain condition on R-submodules, i.e. R has the descending chain
condition on right ideals. Now let T be a nilpotent right ideal of R. Then

R=T KforsomeK R Theorem 4.2.6. We have 1 =t + k for some
t T, K t ...  DYn=0forsomen _LThus@ _kn =0

f . IS =
Sol-nk+---+K =0,1=nk —--- k' K.SoK=R,s0T=0as
required. 1

Remark 6.3.11. Note that we have shown R =11 - - - Iy, a finite direct sum of
minimal right ideals, when R is semi-simple Artinian.

Corollary 6.3.12. A direct sum of matrix rings over division rings is a semi-
simple Artinian ring.

Proof. It was shown in Theorem 4.2.6 that for such a ring RR is com-pletely
reducible. !
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(( Eighth lecture))

6.4 ldeals in Semi-Simple Artinian Rings

Proposition 6.4.1. Let R be a semi-simple Artinian ring:

(i) Every ideal of R is generated by an idempotent lying in the centre
of R.

(i) There is a 1-1 correspondence between ideals of R and
idempotents in C(R).

Proof. (i) See proofs of of Corollary 6.3.8 and Proposition 6.2.11.

(i1) For each e C(R) define f (e) := eR R. Check that f is the required 1-1
correspondence. [']

Definition 6.4.2. | R isa minimal ideal if | =0, | I, 1 R | =0.

Theorem 6.4.3. Let R be a semi-simple Artinian ring. Then R has a finite
number of minimal ideals, their sum is direct, and is R.

Proof. Note that at least one minimal ideal exists since R has the de-
scending chain condition on right ideals . Let Sq be a minimal ideal of R. Then
by Proposition 6.4.1, S1 = e1R = Re1, e;1 = e 1 C(R). Note that (1 - e1) =1
-e1, 1 - e1 C(R), and we have a direct sum of ideals
R=S; T1,T1 :=(1-e1)R=R(1 -e1). (Note that T1 is two-sided.)

If T1 =0, T1 contains a minimal S R. As above, R = S> K, K R. Now

Ty =T1NR=T1N(S2 K)=S> (T NK)=S2 Ty

by the Dedekind Modular Law. We have R = S1 T1 =S1 So To. If To =0
proceed inductively.

We have T1 T2 T3. . ., so by descending chain condition this pro-cess must
terminate. It can only stop when some Ty, = 0. At this stage we have R =S1 - -
- Sm, a finite direct sum of minimal ideals.

Now let S be a minimal ideal of R. We have SR = 0 since R has 1. So SS; =

0 forsome j, 1 <j<m. Now SSj R and SS; S, SS; S; . Since both S and S; are
minimal, we have S = S§j=S; . L
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6.5 Simple Artinian Rings

Let R be a simple ring. Consider R2. R2 R so R2 = 0 or R. Suppose R2 =0.
Then xy = 0 for all X, y R. So any additive subgroup of R is an ideal of R. Thus
R has no additive subgroups other than 0 and R. Thus the additive group of R
must be cyclic of prime order p; the ring structure of

R is completely determined: R ={0, 1, . . . , p — 1} with addition modulo p,
multiplication identically 0.

Thus, when studying simple rings, we assume that R2 = R. Therefore, in this
case, N (R) =0.

Note that a simple Artinian ring is semi-simple Artinian.
Lemma 6.5.1. Let R be a semi-simple Artinian ring and 0 = | R. Then
| itself is a semi-simple Artinian ring. In particular, when | is a minimal
ideal, I is a simple Artinian ring.

Proof. We claim that K rl K rR

We have | = eR = Re where e = e2 | by Corollary 6.3.8. Now k K,
r  E kr=(ke)r since e is the identity of | and k I. So kr = k(er) K since er eR
= 1. This proves the claim.

It follows that | considered as a ring has the descending chain condition on
right ideals and no non-zero nilpotent ideal.

If I is minimal then by the above it must be a simple Artinian ring. (Note that
2 : 2 . L . .
I"=1sincel =0-i.e., lisasimple ring of the type that we are considering.

Theorem 6.5.2. Let R be a semi-simple Artinian ring. Then R is a direct
sum of simple Artinian rings and this representation is unique.

Proof. By Theorem 6.4.3 and Lemma 6.5.1 above we have R = S;

-+ + Sm, Where the S; are minimal ideals of R, hence simple Artinian rings. The
uniqueness follows from the fact that the S; are precisely the minimal
ideals of R. n
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6.6 Modules over Semi-Simple Artinian Rings

Proposition 6.6.1. Let R be a semi-simple Artinian ring. Let Mg be unital

and irreducible. Then M = | as R-modules, where |  R.
K

Proof. M =%, K a maximal right ideal of R, by Exercise Sheet 3. By
Corollary 6.2.4 and Proposition 6.3.7 (or by Theorem 6.3.10 and Theorem

r K

k K, X I unique;mgbnsider r X). So M: —= | as R-modyl;'ies. [l

Theorem 6.6.2. Every non-zero unital module over a semi-simple Artinian
ring is completely reducible.

Proof. Let R be semi-simple Artinian. We have R =17 - - - I, a direct sum
of minimal right ideals of R (see Remark 6.3.11). Let 0 = MR be unital and let

m M. Then m = ml mly + - - - + ml,. We claim that each ml; is either
irreducible or 0.

Consider the map 6 : lj — ml; given by 6(x) = mx for x Ij . Clearly 6 is an R-

homomorphism onto ml; . ker 6 is a submodule of (Ij )r. So ker 8 =0 or I;. This
implies that either 8 is an isomorphism or the zero map. This proves the claim.

Thus, m irreducible submodules. So M = irreducible submod-
M completely reducible. |:|

ules. So is
6.7 The Artin-Wedderburn Theorem

Definitions 6.7.1. Let M be a right R-module. An R-homomorphism 6 :
M — M is called an R-endomorphism. The set of all R-endomorphisms of

M is denoted by ER(M ) or simply E(M ). On ER(M ) we define a sum and
product as follows. Let 6, ¢ ER(M ). Define 6 + ¢ and B¢ by
(6 + @)(m) := 6(m) + ¢(m)
(B@)(m) := 6(¢(m))
for m M . Check that (6 + @), (6¢p) ER(M ). It is routine to check that ER(M ) is

a ring under these operations.

Exercise 6.7.2. Show thatif M = M as R-modulesthen (Ml) =
Er(M>) as rings.
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More generally,

Definitions 6.7.3. For right R-modules X and Y denote the set of all R-

homomorphisms X — Y by Homgr(X, Y ). For a, 8 Homr(X, Y ) define
a + Bas above. Homgr(X, Y ) is easily seen to be an Abelian group.

Definitions 6.7.4. LetV=V1 - - - Vo, W=W7 - - - W, be right R-modules. Let
& . Vj— V be the injection map & (vj) := (O, ...,0,vj,0,...,0)forv;V,
(the vj is in the jth place).

Let 7; : W — W; be the projection map, mi(wq, . .., Wm) = Wj, Wk Wk.
For a module M , write M ) for M -+ M (n times).
Lemma6.7.5.LetV=V; ---Vph, W=W; --.-Wpbe right R-modules.

(i) If @iy Homg(V;j, Wj) are given for each 1 <i<m, 1 <j<n, then we
can define ¢ Homr(V, W) by

mn

=(@11vat+ - -+ @inVn, - - -, PmiVit+ - - -+ PmnVn).

(i) . . :
Homr(V1 ,Wi1) ... Homr(Vp, W1)

Homg(V1, W) ... Homg(Vn, W)

as Abelian groups.

(iii) In particular, for a right R-module M we have
rRM )= '

o ErM) ... ER(M)
E n '

ER(M.)
as rings. ErR(M)
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Proof. (i) Easy to see that ¢ as defined above does indeed belong to
Homgr(V, W).

(i) Let w Homgr(V, W). Define wjj := mjwej . Then wjj Homg(Vj, Wj).
Define a map

O : Homgr(V, W) . . .
Homr(V1 ,W1) ... Homgr(Vnp, W1)

7 Homg(Vy, Wp) . .. Homg(Vn, W)

by ©() = (@jj)- It is easy to see that © is an additive group homomorphism.
O is injective:
wij =0 i,]  mwe =0foralli, ]
wej=0forall j
w=0

O is surjective: let (6; be given with 8 Homgr(V;, Wj). Define 6:V — W
by
®11 ... @in %1

(p(vl x---me)::

Then &  Homg(V, W) by part (i). For v; Vj we have

7Ti9€j(Vj)=779(0,...,O,Vj,O,...,O)
= mi(61j (Vi ), - - ., Bmj (vj))
= 6 (vj)
So mifgj = 6jj . Hence O is an isomorphism.

(n)

(iii) We must check that when V =W =M *” then ® defined above is a
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ring homomorphism. Let 6, ¢ = Er(M ) ). We have
(B9)ij = mi(O9)¢;

= 1m0 idm o 23]
n
=m0 & Tk P&
k=1
n
= (miBex )(mk @g;)
k=1
n
= (B )(ex)
k=1
n
((69)ij ) =(Bik )(®xj)
k=1
O(8p) = O(6)0(¢)
So O is a ring homomorphism. O

Note that if 6 : MR — KR is an isomorphism then the inverse map exists and
IS an isomorphism from K onto M .
Corollary 6.7.6. (Schur’s Lemma.) Let R be a ring and MR an irreducible
module. Then ER(M ) is a division ring.

Proof. Let 0 = 6 ER(M ). We must show that 6 is an isomorphism. 6 is
injective since ker 6 is a submodule of M, so ker 8=0o0r M . But ker 6=M 6
=0, a contradiction, so ker 6 = 0 and 6 is injective.

0 is surjective since (M ) is a submodule of M . As above, (M ) =0, so
6(M ) =M and 6 is surjective.

Thus 6 is an isomorphism. Thus every non-zero element of Er(M ) has an

inverse, and so ER(M ) is a division ring. [

Lemma 6.7.7. Let R be a simple ring with R2 = R. Then any two minimal
right ideals of R are isomorphic as R-modules.

Proof. Let I1, 12> be two minimal right ideals of R. Then r(I1) R and r(l1) =
R.Sor(l1) =0, so I1l2 = 0. So x 17 such that xlo = 0. xl> y R
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and xlo 17 since 11 ¢ R. So xl2 = 11. Now define a map 6 : 12 — |1 by 6(r) = xr for

r Io. Check that ker 8 = 0 so that 6 is an isomorphism from |2 onto xlo = 17. []
Lemma 6.7.8. Let R be a ring with 1. Then R E (R ) asrings.

= R R
Proof. Let x R. Define px ER(RR) by px(r) = xr forr R. Foprr, s R,
Px(r +8) = X(r +8) = Xr + xs = px (1) + px(s)
and

Px(rt) = x(rt) = (xr)t = px(nt.
So we do indeed have that py ErR(RR).

Now define ® : R — ER(RR) by ©(X) = px for x R. We claim that ® is an
isomorphism of rings. Let X3, X2 R. Then for any r R,

Px1+x2 (1) + (X1 + X2)r = X1r + Xor = px1 (1) + px2 (1) = (ox1 + Px2 )(1),

SO Px1+x2 = Px1 T Px2 , and hence O(X1 + X2) = O(X1) + O(X2). Also

Pxaxz (r) + (X2x2)r = x1(X2r) = px1 (Px2 (1)) = (Ox1 Px2 )(1),

50 O(X1X2) = O(X1)O(X2). O is injective since py =0 pPx(1) =x1=0x=0. O is
surjective: let @ ER(RR). Lety := ¢(1) R. Then ¢(r) = @(1r) = yr = py (r), for
all r R. So @ = py . Thus © is an isomorphism of rings. L

Remark 6.7.9. If we work with left modules then we would have to define px(r)

= rx. But then we get an anti-isomorphism between R and ER(RR): ®(xy) =
O(Y)O(x). To get an isomorphsim we need to write our maps on the right.

Theorem 6.7.10. (The Artin-Wedderburn Theorem.) R is semi-simple Ar-
tinian ifand only if R =S S ,whereS = M (D ) for some integers
n; and division rings D;.

Proof. R=S1 - - - Sy, Sjsimple Artinian by Theorem 6.5.2. Sj =11
- Ini, adirect sum of minimal right ideal, for some integer n;, by Remark
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J. K , ..
6.3.11. Butl =1 forallj, k,by Lemma6.7.7. ThusS =1 I (n
summands). Thus,
S = ((S) )byLemma6.7.8
i Esi i Si
I(ni)
M (':S (I )) by Lemma6.7.5
i i1

nj

= Mni (Dj),

where Dj := Eg; (I1) is a division ring by Schur’s Lemma.
Theorem 6.7.11. A semi-simple Artinian ring is left-right symmetric.

Proof. Right-hand conditions R is a direct sum of matrix rings over division
rings left-hand conditions.

For another proof, see Exercise Sheet 5, Question 7. 1
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(( The ninth lecture))

Wedderburn’s Theorem on Finite Division Rings

In this chapter we prove that every finite division ring is a field.

Our strategy is to let D be a finite division ring. We show

that |D| = qn forsomeq =2, n> 1. If we 971 stD:= D\{0} then D is
not an Abelian group. Counting elements in each conjugacy class of D we get an
equation

qn—lzq—l+ gn@ — 1+
n(a)|n,n(a)=n

We then show that such an equation is impossible on number theoretic grounds.

7.1 Roots of Unity

Definitions 7.1.1. (i) O is called a primitive nth root of unity if 8'=1and 8" =
1 for all m < n, where m and n are integers.

(ii) Dn(x) :=  (x — 6), where the product is taken over all primitive nth
roots of
We note that the primitive nth roots of unity exist because of y =
eznk'/n C. Thus
0 (x)=x-1
02 (x)=x+1
@3(X)=X£+X+1
¢ 2
4 (x)=x +1

Lemma 7.1.2. Every cyclotomic polynomial is monic with integer coe -
cients.

Proof. First note that

X —1=  dgx). (7.1.2)
din
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Now we prove our claim by induction on n. If n =1, ®1(x) = x — 1. So, assume
all @k (X) monic with integer coe cients for k < n. Now we can write

X' =1 =®n(x) Dy(x).
d|n,d=n

By the induction hypothesis we can write X —1= On(X)f (X), where f (x) is
monic with coe cients in Z. Therefore, we may assume that

-1
f(x)=x +a-1x ~+---+aix+ap,

aj Z,and
On(X) = brX™ + bpagX T T+ byx +
bg, bj C. We see that

X —1= mem+ + (bm-1 + bma -1)Xm+ s agbo.
Comparing these two polynomials, we have by = 1, so ®p is monic; m+ = n;
bm-1 + bma -1 =0, s0 byp-1 = -1 - a -1 Z. By continuing this method, we see
thatbjZfor0<i<m.[

Lemma 7.1.3. If djn and d = n then

n
X -1

D (x)
n Xd—1
in the sense that the quotient is polynomial with integer coe cients.
Proof. By (7.1.1) we can write

xd, 1 Skl Ao (X))
X 1 dn®@g(X)

. . ]
Because every divisor of d is a divisor of n, we have

n
’X%ll = dp(x) g (X)
X dll nd d

1l = Op(X)f (X), where

f(x)= . dd>d (x).

X
and so “yq -
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So f (x) is a monic polynomial in Z[x] by the previous lemma. So

n
x -1
D (X)
n Xd -1
-
Lemma 7.1.4. Let g, n, m be positive integers, g > 1. Then
qm - 1|qn - 1m|n.
Proof. (). Evident.
(). We may assume thatn >m. Thenn=km +r,0<r<m, k > 0. Now
-1 q7q -1
q -1 q -1
kKm rr r
=q_gg +q -1
m _ l
K
_g(@@) -1 +qr -1
¢ -1 g -1
r m K r
. . . a9 ) 1 q -1
By our assumption, the LHS is an integer,and ~—¢™1  Z,s0 g™ 1 Z,
sor=0. Thus m|n. H

7.2 Group Theory

Definitions 7.2.1. Let G be a group. We say that X, y G are conjugate if a G
such that x = a_lya, and so we can define an equivalence relation of conjugacy,
and the corresponding conjugacy classes: xG = {a_lxa|a G}. We define

C (x) ={a GJax = xa} to be the centralizer of x in
G. The centre of G is

Z(G):={g G|h G,gh=hg}.
Proposition 7.2.2. For G a group, x G, C (x) is a subgroup of G.

Theorem 7.2.3. Let G be a finite group. Then |xG| =|G:C ().
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Proof. Leta, b G. Then

-1 -1 -1 -1
a xa=b xb xab = =ab "X

(@b ) Cx)
C(x)a=C ()b

So there are as many elements in xG as there are cosets of C (x). [

7.3 Finite Division Rings

Lemma 7.3.1. Let K be a non-zero subring of a finite division ring D. Then
K is also a division ring.

Proof. Exercise. Need 1p K and x_1 Kforx K,x=0. [

Corollary 7.3.2. The centre of a finite division ring is a field.

Lemma 7.3.3. Let D be a finite division ring with centre C. Then |D| = qn
where g = |C| > 1 and n is some positive integer.

Proof. C is a field. We can view D as a vector space over C. Let n = dim¢c
D, with dq, . . ., dn a basis for D over C. So every element of D is uniquely
expressible as c1dq +- - -+cpdp with ¢ C. So we have |D| = qn. ]

Theorem 7.3.4. (Wedderburn 1905.) A finite division ring is necessarily a
field.

Proof. Let D be a finite division ring with centre C, |C| = q. Then |D| = qn,
qg=2,n=1, by Lemma 7.3.3. We want to show that D = C, or, equivalently,
thatn = 1.

Assume that n > 1. Leta D, C(a) := {x D |xa = ax}. Then C(a) is a subring
of D. By Lemma 7.3.1, it is a division ring with C(A) C. So |C(a)| = qn(a) for
some n(a) = 1. C (a) := C(a)\{0} is a multiplicative subgroup of D . We have |C
@) = qn ¥, ID | = qn - 1. By Lagrange’s Theorem, qn Y- 1|qn - 1.
Lemma 7.1.4 implies that n(a)|n. Theorem 7.2.3 applied to D implies that the
number of elements conjugate to a = the index

of C@inD = _¢"-1= .Nowa C(a) n(a) = n. By counting elements
an@-1
of D: q"
n 1T -1
g -1=q9- na @ -1 (7.3.1)
n,n(a)=n
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where the sum is carried out for one a in each conjugacy class for elements not
in the centre. Now ®n(q) = qn -1byLemma7.1.2;n(@=nby ¢ (@ i

Lemma 7.1.3. By (7.3.1), n g@-1
On(q) =q - 1. (7.3.2)
We have ®p(q) = (q — 6), 6 a primitive nth root of 1. So |Pn(g)| =

g — 6] >qg - 1since n > 1. This contradicts (7.3.2). So the assumption n >
lisfalse,and D = C isa field. [J

To answer the question of what finite fields look like, we need Galois
Theory.
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(( tenth lecture))

8 Some Elementary Homological Algebra

In this section all rings have 1 and all modules are unital.

8.1 Free Modules
Definitions 8.1.1. A right R-module F is free if
(i) F is generated by a subset S F;
@i) jsjri=0 ri = 0 for all such finite sums with s; S,.r;i R.

We say that free basis for F . (Convention: {0} is the free module generated by

)

An element of F has a unique epression as s1rp + - - -+ Sk rg . A typical free
module is isomorphicto (R - - - R .. .)Rr. Fr free and finitely generated
F = (R R) (afinite direct sum).

z - :
The Z-module n—z , n > 1, cannot be free: for suppose thata =a+nZis

an element of a free basis. Then an =0, with n = 0, a contradiction.

8.2 The Canonical Free Module

Definition 8.2.1. Let A be a set indexed by A. Let Fa be the set of all
formal sums

A many r, = 0
an aA Aty Y RA, finitely

wiul al - a >
AN AA AN AA

rp=s; forallA A. We make Fa into the

canonical free right R-module by defining

apry + a)s) = ap(ry +sy)

and



apr, = a(rar)

A is a free basis for Fa; we identify a Awithal Fa.

Proposition 8.2.2. Every right R-module is the homomorphic image of a

free right R-module.
55



Proof. Let M be a free right R-module. Index the elements of M and form the
free module Fy; , considering M merely as a set. Elements

of Fyy are formal sums of the form  (m;)ri, m; M,ri R. Define

0:Fy — M: (mjr; —mjir; M. This map is well-defined and is an
R-homomorphism by the definition of Fy L]

8.3 Exact Sequences

Definitions 8.3.1. Let M; be a sequence of right R-modules and f; a se-

quence of R-homomorphisms Mj — Mj-1. The sequence (which may be
finite or infinite)
f f f
i+2 i+1 fi i-1
= My —> M ——> M- — ...
is said to be exact if im fi+1 =kerfi  foralli. A short exact sequence is an

exact sequence of the form
f g
0-—M-—-M-—-"M -—0.

. f . :
In a short exact sequence, since 0 — M —— M is exact, ker f =0 and so f is

a monomorphism (an injective homomorphism). Since M -9 M-S 0is
exact, im g = M and g is an epimorphism (a surjective homomorphism).

M= imf=f(M) M,soM isisomorphicto a submodule of M .
Also M=M ="
kerg imf
Given modules A and B we can construct the short exact sequence
i T A

0-—B-—A-—B —0,
where i is the inclusion map and 17 the natural projection.

Proposition 8.3.2. Given a short exact sequence

a B
0-—A-—B-—C-——0

of right R-modules the following are equivalent:
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(i) im ais a direct summand of B;
(i) an R-homomorphism y : C — B with By = idc ;
(i) an R-homomorphism & : B — A with da = ida.
Proof. (i) (ii). Let B =im a B1, B1 a submodule of B. So B = ker 8 B;. Let
B1 := Bls1 . We have
C =p(B) =B(ker B Bi1)=pBB1 =pB1By,
so B1 is an epimorphism. Also ker 81 ker 8 N By = 0. Thus B1 is an iso-
morphism of B; onto C. Define y := ,81_1 :C—B.ThenBy=idc.
(ii) (). We shall show that B = ker 8 yB(B). Ifb B, b = (b — yBb) + yB(b). b
- yB(b) ker B since
B(b - yB(b)) = B(b) - ByB(b) = B(b) —idc B(b) = B(b) - B(b) =0,
and if z ker B N yB(B) then z = yB(b) forsome b B, and B(z) = 0. Thus
0 =B(z) = ByB(b) = B(b),
so0z=0,B=kerpg vB(B)=ima yB(B).

Similarly, we can show the equivalence of (i) and (iii). O
Definition 8.3.3. We say that the short exact sequence
a B
0-—A-—B-—C—-——0
splits if any one (and hence all) of the above conditions holds.

1
Note that if the above sequence splits then B = im «a B,B = C;i.e,

8.4  Projective Modules

Definition 8.4.1. A right R-module P is said to be projective if given any
diagram of the form

P
H

A B 0 exact
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there is an R-homomorphism pu : P — A such that u=mu , i.e. u(x) = m(
u (x)) forall x P.

P
Iy H
m

A B 0 exact
Lemma 8.4.2. A free module is projective.

Proof. Let F be a free module with a free basis {eq}. Consider

F
W M
A B 0 exact
Let by := H(eq). As mTis an epimorphism we can choose ag A such that

bg =m(ag). Definepy : F—>Abyu ( g€gfa) = gaafafa R.Thenpu

is an R-homomorphism F — A and

mu q €ala =1 a 8glg
= m@gla
a
WA
= aa
a
= Heqra
a
=M a €alg
Somu =L 1

We shall see that a projective module need not be free.

Lemma 8.4.3. Let Pq, a A, be right R-modules. Then 4 A Pq is pro-jective if
and only if all P4 are projective.
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P—-P.
jectionmap a A « B —  aA
Proof. Let ig be the inclusion map Pg Pa; let pg be the pro-

() Consider the diagram

m
A B 0 exact
This gives rise to diagrams
I.J
a
; fia
A B 0 exact
Since each P is projective there are R-homomorphisms fg : Pg — A such
that f iy = rr,, Define ah a a IR IE a N\ fapa. (ThlS makes
sense: forany z P we have p (z) = 0 for all except a finite number
of a’s.) We have = aA aO@ a A aa as required.
( ) Forany B A consider
Pg
fg
A B 0 exact
This gives rise to
fa P8
f
M
A B 0 exact

= = - P —-A

SsmcL!Ch a A &lsprojecllve.gereéan‘RrShogomommsmf: 7B BBE B and P B a /\ a
that mf=f p nfi fpi f fi P — A.Thus

Pg is projective. o

Proposition 8.4.4. The following are equivalent:

(i) P is a projective module;
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(i) P is adirect summand of a free module;
(i) every short exact sequence 0 > M — M — P — 0 splits.

Proof. (iii) (ii). Consider the short exact sequence

0—Kp —Fp —P—0,
where Kp is the kernel of the canonical map Fp — P . Since this short exact
sequence splitswehave F =P K .
(i)  (i). Follows from Lemma 8.4.2 and Lemma 8.4.3.
(i) (iii). Consider
P
u idp
f a

0 M M P Oexact B
Since P is projective, there is an R-homomorphism u : P — M such that gu =

idp . Thus the given short exact sequence splits. [

Theorem 8.4.5. The following are equivalent:
() R is semi-simple Artinian;
(i) every unital right R-module is projective.

Proof. (i) (ii). LetM be aright R-module. By Theorem 6.6.2,

M = 4 A My, each M, irreducible. Proposition 6.6.1 implies that each M, is
isomorphic to a right ideal of R. A right ideal of R is a direct sum-mand of R
since RR is completely reducible. So, by Lemma 8.4.2 and Lemma 8.4.3, right
ideals of R are projective. So M is projective by Lemma 8.4.3.

(i) (i). Letl R. Consider the short exact sequence
i T R
0-—Il-—R-—— | —0.

This short exact sequence splits since R is a projective R-module. SoR =
|
I KK R. Thus I is a direct summand of R. So RR is completely
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reducible and thus R is semi-simple Artinian. 1

If R is a ring with 1, then all right R-modules are free if and only if R is a
division ring (Exercise Sheet 5, Question 8).
— z 27 37
Example 8.4.6. Projective free. LetR=¢ z,A= 5 z,B=6 z. ThenR = A
B, and A and B are projective by Lemma 8.4.2 and Lemma 8.4.3. A, B cannot
be free since they have fewer elements than R.
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